Math, asked by TrustedAnswerer19, 1 month ago


\begin{array}{cc} \sf \: find \: the \: area \: of \: the \: region \: enclosed  \:  \:  \: \\ \\ \sf \: by \: the \: following \: curves  \: or \: equations:    \\  \\  \\   \boxed{\bf \: y  = x + 6} \\  \\  \boxed{ \bf \: y =  {x}^{2} } \\  \\  \boxed{ \bf \: x = 5} \\  \\  \boxed{ \bf \: x = 0} \end{array}

Answers

Answered by mathdude500
40

\large\underline{\sf{Solution-}}

Given curves are

\rm :\longmapsto\:y =  {x}^{2}

represents the upper parabola with vertex (0, 0).

\rm :\longmapsto\:y = x + 6

represents a line.

So, point of intersection of above two curves,

\rm :\longmapsto\: {x}^{2} = x + 6

\rm :\longmapsto\: {x}^{2} - x  - 6 = 0

\rm :\longmapsto\: {x}^{2} - 3x  + 2x - 6 = 0

\rm :\longmapsto\:x(x - 3) + 2(x - 3) = 0

\rm :\longmapsto\:(x - 3)(x + 2) = 0

\bf\implies \:x = 3 \:  \: or \:  \: x =  - 2

So, point of intersection are

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 3 & \sf 9 \\ \\ \sf  - 2 & \sf 4 \end{array}} \\ \end{gathered}

Now, Required area bounded between the curves

\rm :\longmapsto\:y =  {x}^{2}, \: y = x + 6, \: x = 0 \: and \: x = 5 \:

is

\rm \:  =  \:\displaystyle\int_0^3 {x}^{2} \: dx \:  +  \: \displaystyle\int_3^5 \: (x + 6) \: dx

We know,

\boxed{ \tt{ \: \displaystyle\int \:  {x}^{n}  \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}  + c \: }}

\rm \:  =  \:\bigg[\dfrac{ {x}^{3} }{3} \bigg]_0^3 + \bigg[\dfrac{ {x}^{2} }{2}  + 6x\bigg]_3^5

\rm \:  =  \:\bigg[\dfrac{ 27 }{3} \bigg] + \bigg[\dfrac{25 - 9 }{2}  + 6(5 - 3)\bigg]

\rm \:  =  \:9 + 8 + 12

\rm \:  =  \:29 \: square \: units

More to know :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Attachments:
Answered by poyumjangnyopoyumjan
2

Answer:

Gd evening dost(❁´◡`❁)

kasa ho,mujhe bhul gye kya Ó╭╮Ò

Similar questions