Math, asked by Anonymous, 5 hours ago

\begin{gathered}\begin{gathered}\begin{gathered} \boxed{\begin{array}{cc}\bf \: if \: \: \: \frac{ {sin}^{4} \alpha }{a} + \frac{ {cos}^{ 4 } \alpha }{b} = \frac{1}{a + b} \: \: \\ \\ \bf \: then \: prove \: that : \\ \\ \\ \bf \: \frac{ {sin}^{4n} \alpha }{ {a}^{2n - 1} } + \frac{ {cos}^{4n} \alpha }{ {b}^{2n - 1} } = \frac{1}{ {(a + b)}^{2n - 1} }\end{array}}\end{gathered}\end{gathered}\end{gathered}

Answers

Answered by mathdude500
15

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \dfrac{ {sin}^{4} \alpha }{a} + \dfrac{ {cos}^{ 4 } \alpha }{b} = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{ {sin}^{4} \alpha }{a} + \dfrac{  {( {cos}^{2}  \alpha )}^{2}  }{b} = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{ {sin}^{4} \alpha }{a} + \dfrac{  {(1 -  {sin}^{2}  \alpha )}^{2}  }{b} = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{ {sin}^{4} \alpha }{a} + \dfrac{1 +  {sin}^{4} \alpha  - 2 {sin}^{2} \alpha }{b} = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{b {sin}^{4} \alpha  + a +  a{sin}^{4} \alpha  - 2 a{sin}^{2} \alpha }{ab} = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{b {sin}^{4} \alpha  +  a{sin}^{4} \alpha  - 2 a{sin}^{2} \alpha }{ab} + \dfrac{a}{ab}  = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{b {sin}^{4} \alpha  +  a{sin}^{4} \alpha  - 2 a{sin}^{2} \alpha }{ab} + \dfrac{1}{b}  = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{b {sin}^{4} \alpha  +  a{sin}^{4} \alpha  - 2 a{sin}^{2} \alpha }{ab}= \dfrac{1}{a + b} -  \dfrac{1}{b}

\rm :\longmapsto\: \dfrac{b {sin}^{4} \alpha  +  a{sin}^{4} \alpha  - 2 a{sin}^{2} \alpha }{ab}= \dfrac{b - a - b}{(a + b)b}

\rm :\longmapsto\: \dfrac{b {sin}^{4} \alpha  +  a{sin}^{4} \alpha  - 2 a{sin}^{2} \alpha }{a}= \dfrac{- a}{(a + b)}

\rm :\longmapsto\:(a + b) {sin}^{4} \alpha  - 2a {sin}^{2} \alpha  =  -  \dfrac{ {a}^{2} }{a + b}

\rm :\longmapsto\:(a + b)^{2}  {sin}^{4} \alpha  - 2a(a + b) {sin}^{2} \alpha  =  -   {a}^{2}

\rm :\longmapsto\:(a + b)^{2}  {sin}^{4} \alpha  - 2a(a + b) {sin}^{2} \alpha + {a}^{2}  = 0

\bf\implies \: {\bigg[(a + b) {sin}^{2} \alpha  - a \bigg]}^{2}  = 0

\bf\implies \: {\bigg[(a + b) {sin}^{2} \alpha  - a \bigg]} = 0

\bf\implies \: {sin}^{2} \alpha  = \dfrac{a}{a + b}

So,

\bf\implies \: {cos}^{2} \alpha  = 1 -   {sin}^{2} \alpha  = 1 - \dfrac{a}{a + b}  = \dfrac{b}{a + b}

Now, Consider

\rm :\longmapsto\:\dfrac{ {sin}^{4n} \alpha }{ {a}^{2n - 1} } + \dfrac{ {cos}^{4n} \alpha }{ {b}^{2n - 1} }

 \rm \:  =  \: \dfrac{ ({sin}^{2} \alpha) {}^{2n}  }{ {a}^{2n - 1} } + \dfrac{ ({cos}^{2} \alpha)^{2n}  }{ {b}^{2n - 1} }

 \rm \:  =  \: \dfrac{ {a}^{2n} }{ {(a + b)}^{2n}  {a}^{2n - 1} } + \dfrac{ {b}^{2n} }{ {(a + b)}^{2n}  {b}^{2n - 1} }

 \rm \:  =  \: \dfrac{ {a}^{} }{ {(a + b)}^{2n}} + \dfrac{ {b}^{} }{ {(a + b)}^{2n} }

 \rm \:  =  \: \dfrac{ {a} + b}{ {(a + b)}^{2n}}

 \rm \:  =  \: \dfrac{1}{ {(a + b)}^{2n - 1}}

Hence, Proved


pulakmath007: Excellent work from Brilliant star
Answered by OoAryanKingoO78
2

Answer:

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \dfrac{ {sin}^{4} \alpha }{a} + \dfrac{ {cos}^{ 4 } \alpha }{b} = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{ {sin}^{4} \alpha }{a} + \dfrac{  {( {cos}^{2}  \alpha )}^{2}  }{b} = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{ {sin}^{4} \alpha }{a} + \dfrac{  {(1 -  {sin}^{2}  \alpha )}^{2}  }{b} = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{ {sin}^{4} \alpha }{a} + \dfrac{1 +  {sin}^{4} \alpha  - 2 {sin}^{2} \alpha }{b} = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{b {sin}^{4} \alpha  + a +  a{sin}^{4} \alpha  - 2 a{sin}^{2} \alpha }{ab} = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{b {sin}^{4} \alpha  +  a{sin}^{4} \alpha  - 2 a{sin}^{2} \alpha }{ab} + \dfrac{a}{ab}  = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{b {sin}^{4} \alpha  +  a{sin}^{4} \alpha  - 2 a{sin}^{2} \alpha }{ab} + \dfrac{1}{b}  = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{b {sin}^{4} \alpha  +  a{sin}^{4} \alpha  - 2 a{sin}^{2} \alpha }{ab}= \dfrac{1}{a + b} -  \dfrac{1}{b}

\rm :\longmapsto\: \dfrac{b {sin}^{4} \alpha  +  a{sin}^{4} \alpha  - 2 a{sin}^{2} \alpha }{ab}= \dfrac{b - a - b}{(a + b)b}

\rm :\longmapsto\: \dfrac{b {sin}^{4} \alpha  +  a{sin}^{4} \alpha  - 2 a{sin}^{2} \alpha }{a}= \dfrac{- a}{(a + b)}

\rm :\longmapsto\:(a + b) {sin}^{4} \alpha  - 2a {sin}^{2} \alpha  =  -  \dfrac{ {a}^{2} }{a + b}

\rm :\longmapsto\:(a + b)^{2}  {sin}^{4} \alpha  - 2a(a + b) {sin}^{2} \alpha  =  -   {a}^{2}

\rm :\longmapsto\:(a + b)^{2}  {sin}^{4} \alpha  - 2a(a + b) {sin}^{2} \alpha + {a}^{2}  = 0

\bf\implies \: {\bigg[(a + b) {sin}^{2} \alpha  - a \bigg]}^{2}  = 0

\bf\implies \: {\bigg[(a + b) {sin}^{2} \alpha  - a \bigg]} = 0

\bf\implies \: {sin}^{2} \alpha  = \dfrac{a}{a + b}

So,

\bf\implies \: {cos}^{2} \alpha  = 1 -   {sin}^{2} \alpha  = 1 - \dfrac{a}{a + b}  = \dfrac{b}{a + b}

Now, Consider

\rm :\longmapsto\:\dfrac{ {sin}^{4n} \alpha }{ {a}^{2n - 1} } + \dfrac{ {cos}^{4n} \alpha }{ {b}^{2n - 1} }

 \rm \:  =  \: \dfrac{ ({sin}^{2} \alpha) {}^{2n}  }{ {a}^{2n - 1} } + \dfrac{ ({cos}^{2} \alpha)^{2n}  }{ {b}^{2n - 1} }

 \rm \:  =  \: \dfrac{ {a}^{2n} }{ {(a + b)}^{2n}  {a}^{2n - 1} } + \dfrac{ {b}^{2n} }{ {(a + b)}^{2n}  {b}^{2n - 1} }

 \rm \:  =  \: \dfrac{ {a}^{} }{ {(a + b)}^{2n}} + \dfrac{ {b}^{} }{ {(a + b)}^{2n} }

 \rm \:  =  \: \dfrac{ {a} + b}{ {(a + b)}^{2n}}

 \rm \:  =  \: \dfrac{1}{ {(a + b)}^{2n - 1}}

Hence, Proved

Similar questions