Math, asked by sajan6491, 6 hours ago

\begin{gathered}\bf \: if \: \: \: \rm \: f :R \to \: R \: \: \: \: and \: \\ \\ \rm \: f(x) = \displaystyle \int_1^3 \: \rm \frac{1}{ |t - x| + 1} \: \: dt \\ \\ \rm \: then \: \: \displaystyle \int_1^3 \rm \: f(t) \: dt = ? \end{gathered}

Answers

Answered by IamIronMan0
141

Answer:

  \huge\green{\displaystyle \int_1^3f(t) \: dt = 4}

Step-by-step explanation:

Given that

f(x) = \displaystyle \int_1^3 \: \rm \frac{1}{ |t - x| + 1} \: \: dt

Note that x and t are independent variables , so

f(t) = \displaystyle \int_1^3 \: \rm \frac{1}{ |t - t| + 1} \: \: dt \\  \\  \implies \: f(t) = \displaystyle \int_1^3 \: \rm \frac{1}{ 0 + 1} \: \: dt \\  \\   \implies \: f(t) = \displaystyle \int_1^3dt = 3 - 1  \\  \\  \implies \: f(t) = 2

Now integrate both sides from 1 to 3

\displaystyle \int_1^3f(t)\: \:  dt = \displaystyle \int_1^32 \: dt \\  = 2(3 - 1)  \\ = 4

Answered by jaswasri2006
147

 \huge  \red{ \boxed{\sf \int_3^{1} f(t)dt =  \pink4}}

 \\  \\

EXPLANATION :

 \\  \\

 \large \sf f(x) =  \int_ {3}^{1}  \frac{1}{ |t - x|  + 1}  \: dt

 \\

NOTE POINT :

↣ x and t are independent variables

 \\  \\

 \large \sf f(t) =  \int_ {3}^{1}  \frac{1}{ |t - t| + 1 }  \: dt

 \large \sf f(t) =  \int_ {3}^{1}  \frac{1}{0 + 1}  \: dt

 \large \sf f(t) =  \int_ {3}^{1} dt = 3 - 1 = 2

f(t) = 2

 \\

NOW BY INTEGRATE ON BOTH SIDES BY 1 TO 3,

 \\  \\

  \Large \sf\int_ {3}^{1} f(t) \: dt =  \int_ {3}^{1} 2 \: dt

 \sf  \Large =  \: 2(3 - 1)

2

Similar questions