Math, asked by itzsecretagent, 1 month ago


\begin{gathered}\bigstar\:\:\underline{ \red{\sf QueStion : }} \bigstar \\\end{gathered}
 \bf 1) \:  y =  log \sqrt{ {9x}^{2} + 10x + 8 }
 \bf 2) \:  y =  \frac{ \sqrt{5x + 6} }{ \sqrt{4x - 5} }  \\



❖ Don't spam here!!
❖ Don't be greedy for points!!​

Answers

Answered by sincerestperson
6

\underline{\underline{\maltese\: \: \textbf{\textsf{Answer}}}}

Question 1.

 \sf  y = log \sqrt{ {9x}^{2} + 10x + 8}

Diffe. w. r. to x

 \sf \longrightarrow  \frac{dy}{dx}  =  \frac{1}{ \sqrt{ {9x}^{2} + 10x + 8 } }  \times  \frac{1}{2 \sqrt{ {9x}^{2} + 10x + 8} }  \times (9 \times 2x + 10 \times 1) \\

 \sf \longrightarrow  \frac{dy}{dx}  =  \frac{18x + 10}{2( {9x}^{2}  + 10x + 8} \\

\sf \longrightarrow  \frac{dy}{dx} =  \frac{ \cancel2(9x + 5)}{ \cancel2( {9x}^{2} + 10x + 8) }   \\

\sf \longrightarrow  \frac{dy}{dx} =  \frac{(9x + 5)}{( {9x}^{2} + 10x + 8) }   \\

Question 2.

 \sf y =  \frac{ \sqrt{5x + 6} }{ \sqrt{4x - 5} }  \\

Diff. w. r. to x,

\sf \longrightarrow   \frac{dy}{dx}  =  \frac{ \sqrt{4x - 6} \frac{d}{dx}( \sqrt{5x + 6)} - (5x + 6) \frac{d}{dx} \sqrt{4x - 5}}{ {( \sqrt{4x - 5)} }^{2} }  \\

\sf \longrightarrow   \frac{dy}{dx}  =  \frac{ \sqrt{(4x - 5)}  \times  \frac{1 \times (5 \times 1 + 0)}{2 \sqrt{5x} + 6} -  \sqrt{5x + 6} \frac{1 \times (4 \times 1 - 0)}{2 \sqrt{4x - 5} } }{ {( \sqrt{4x - 5)} }^{2} }   \\

\sf \longrightarrow   \frac{  \frac{\sqrt{4x - 5}  \times 5}{2 \sqrt{5x + 6}}  -  \frac{\sqrt{(5x + 6)} \times 4}{2 \sqrt{4x - 5} } }{{(4x - 5)} }  \\

\sf \longrightarrow   \frac{5(4x - 5) - 4 \times (5x + 6)}{2 \sqrt{4x - 5} \sqrt{5x + 6} (4x - 5) }  \\

\sf \longrightarrow   \frac{dy}{dx}  =  \frac{20x - 25 - 20x - 24}{2(4x - 5) \frac{3}{2 \sqrt{5x + 6} }}  \\

\sf \longrightarrow   \frac{dy}{dx}  =  \frac{ - 49}{2(4x - 5) \frac{3}{2 \sqrt{5x + 6} } }  \\

ㅤㅤㅤ

ㅤㅤ

Hope it helps

__________thanx

$\rule{300px}{.3ex}$

Answered by mehakShrgll
3

hope it helps u

THANKS(¬_¬)ノ

Attachments:
Similar questions