Math, asked by THEmultipleTHANKER, 3 months ago

\begin{gathered}\boxed{\begin{array}{|c| c|}\cline{1-2}\bf{Discriminant}&\bf{Nature}\\\cline{1-2}\sf{-ve}&\sf{No\:real\:roots}\\\cline{1-2} \sf{+ve}&\sf{Two\:distinct\:roots}\\\cline{1-2}\sf{0}&\sf{Two\:equal\:roots}\\\cline{1-2}\end{array}}\end{gathered}

\rule{300}{2}

Solve the following quadratic equation by formula method.

\bullx²+2x–5=0. ​

Answers

Answered by JyotShrimakar
2

Answer:

x = 2 +  \sqrt{6}  \: or \: x = 2 -  \sqrt{6}

Step-by-step explanation:

 {x}^{2}  + 2x - 5 = 0

comparing \: with \:  a{x}^{2}  + bx + c = 0 \:  \:  \: we \: get

a = 1, b = 2,c = -5

 {b}^{2}  - 4ac =  {(2)}^{2}  - 4 \times 1 \times ( - 5)

 = 4 - ( - 20)

 = 4 + 20

 = 24

x =  \frac{ - b   \binom{ + }{ - }  \sqrt{ {b}^{2}  - 4ac} }{2a}

 = \frac{  -  {2}^{2}  \binom{ + }{ - }  \sqrt{24} }{2 \times 1}

 =  \frac{4 \binom{ + }{ - } 2 \sqrt{6} }{2}

 =  \frac{2(2 \binom{ + }{ - } \sqrt{6} ) }{2}

x =  2 \binom{ + }{ - } \sqrt{6}

x = 2 +  \sqrt{6}  \: or \: x = 2 -  \sqrt{6}

Answered by VarshaS553
2

Answer:

tion:

{x}^{2} + 2x - 5 = 0x2+2x−5=0

comparing \: with \: a{x}^{2} + bx + c = 0 \: \: \: we \: getcomparingwithax2+bx+c=0weget

a = 1, b = 2,c = -5

{b}^{2} - 4ac = {(2)}^{2} - 4 \times 1 \times ( - 5)b2−4ac=(2)2−4×1×(−5)

= 4 - ( - 20)=4−(−20)

= 4 + 20=4+20

= 24=24

x = \frac{ - b \binom{ + }{ - } \sqrt{ {b}^{2} - 4ac} }{2a}x=2a−b(−+)b2−4ac

= \frac{ - {2}^{2} \binom{ + }{ - } \sqrt{24} }{2 \times 1}=2×1−22(−+)24

= \frac{4 \binom{ + }{ - } 2 \sqrt{6} }{2}=24(−+)26

= \frac{2(2 \binom{ + }{ - } \sqrt{6} ) }{2}=22(2(−+)6)

x = 2 \binom{ + }{ - } \sqrt{6}x=2(−+)6

x = 2 + \sqrt{6} \: or \: x = 2 - \sqrt{6}x=2+6orx=2−6

Similar questions