Solve the following quadratic equation by formula method.
x²+2x–5=0.
Answers
Answered by
2
Answer:
Step-by-step explanation:
a = 1, b = 2,c = -5
Answered by
2
Answer:
tion:
{x}^{2} + 2x - 5 = 0x2+2x−5=0
comparing \: with \: a{x}^{2} + bx + c = 0 \: \: \: we \: getcomparingwithax2+bx+c=0weget
a = 1, b = 2,c = -5
{b}^{2} - 4ac = {(2)}^{2} - 4 \times 1 \times ( - 5)b2−4ac=(2)2−4×1×(−5)
= 4 - ( - 20)=4−(−20)
= 4 + 20=4+20
= 24=24
x = \frac{ - b \binom{ + }{ - } \sqrt{ {b}^{2} - 4ac} }{2a}x=2a−b(−+)b2−4ac
= \frac{ - {2}^{2} \binom{ + }{ - } \sqrt{24} }{2 \times 1}=2×1−22(−+)24
= \frac{4 \binom{ + }{ - } 2 \sqrt{6} }{2}=24(−+)26
= \frac{2(2 \binom{ + }{ - } \sqrt{6} ) }{2}=22(2(−+)6)
x = 2 \binom{ + }{ - } \sqrt{6}x=2(−+)6
x = 2 + \sqrt{6} \: or \: x = 2 - \sqrt{6}x=2+6orx=2−6
Similar questions