Math, asked by TheBrainlyBaby, 2 months ago

\begin{gathered}{\Huge{\textsf{\textbf{\underline{\underline{\color{purple}{Question:}}}}}}}\end{gathered}

\begin{gathered}\textsf{Calculate the amount and the compound interest}\\ \ \textsf \ \textsf{on 15000 in 2 years when the rates} \\ \textsf{of interest for successive years are 10 \% }\\ \textsf{and 15 \% respectively.} \end{gathered}

Answers

Answered by Anonymous
154

Answer:

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{red}{Given:}}}}}}}\end{gathered}

  • \red\bigstar Principle = Rs.15000
  • \red\bigstar Time = 2 years
  • \red\bigstar Rate of Interests = 10%, 15%

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{red}{To Find:}}}}}}}\end{gathered}

  • \red\bigstar Amount
  • \red\bigstar Compound Interest

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{red}{Using Formulae:}}}}}}}\end{gathered}

\begin{gathered}\bigstar{\underline{\boxed{\sf {\purple{A =P\bigg\lgroup{1 +\dfrac{R_1}{100} }\bigg\rgroup\bigg\lgroup{1 + \dfrac{R_2}{100}}\bigg\rgroup}}}}} \end{gathered}

  • \green\star A = Amount
  • \green\star P = Principle
  • \green\star \sf{R_1} = Rate Interest of first year
  • \green\star \sf{R_2} = Rate Interest of second year

\bigstar{\underline{\boxed{\sf{\purple{C.I = \big\lgroup{A - P \big\rgroup}}}}}}

  • \green\star C.I = Compound Interest
  • \green\star A = Amount
  • \green\star P = Principle

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{red}{Solution:}}}}}}}\end{gathered}

\color{green}{\dag \: {\underline{\underline{\frak{Finding \: the \: Amount : }}}}}

\quad{: \implies{\sf{A = \bf{P\bigg\lgroup{1 +\dfrac{R_1}{100} }\bigg\rgroup\bigg\lgroup{1 + \dfrac{R_2}{100}}\bigg\rgroup}}}}

  • Substituting the values

\quad{: \implies{\sf{A = \bf{15000\bigg\lgroup{1 +\dfrac{10}{100} }\bigg\rgroup\bigg\lgroup{1 + \dfrac{15}{100}}\bigg\rgroup}}}}

\quad{: \implies{\sf{A = \bf{15000\bigg\lgroup{{\dfrac{(1 \times 100) + 10}{100}}\bigg\rgroup\bigg\lgroup{\dfrac{(1 \times 100) + 15}{100}}\bigg\rgroup}}}}}

\quad{: \implies{\sf{A = \bf{15000\bigg\lgroup{{\dfrac{100+ 10}{100}}\bigg\rgroup\bigg\lgroup{\dfrac{100+ 15}{100}}\bigg\rgroup}}}}}

\quad{: \implies{\sf{A = \bf{15000\bigg\lgroup{{\dfrac{110}{100}}\bigg\rgroup\bigg\lgroup{\dfrac{115}{100}}\bigg\rgroup}}}}}

\quad{: \implies{\sf{A = \bf{15000\bigg\lgroup{{\dfrac{110}{100}} \times {\dfrac{115}{100}}\bigg\rgroup}}}}}

\quad{: \implies{\sf{A = \bf{15000\bigg\lgroup{{\dfrac{12650}{10000}}\bigg\rgroup}}}}}

\quad{: \implies{\sf{A = \bf{15000 \times {\dfrac{12650}{10000}}}}}}

\quad{: \implies{\sf{A = \bf {\cancel{15000}\times{\dfrac{12650}{\cancel{10000}}}}}}}

\quad{: \implies{\sf{A = \bf {1.5\times{12650}}}}}

\quad{: \implies{\sf{\purple{A = \bf {18975}}}}}

{\bigstar{\underline{\boxed{\sf{Amount = Rs.18975}}}}}

\begin{gathered}\end{gathered}

\color{green}{\dag \:{\underline{\underline{\frak{Finding \: Compound \: Interest : }}}}}

\quad{ : \implies{\sf{C.I = \bf\big\lgroup{A - P \big\rgroup}}}}

  • Substituting the values

\quad{ : \implies{\sf{C.I = \bf\big\lgroup{18975 - 15000\big\rgroup}}}}

\quad{ : \implies{\sf{\purple{C.I = \bf{Rs.3975}}}}}

{\bigstar{\underline{\boxed{\sf{Compound \: Interest = Rs.3975}}}}}

\begin{gathered}\end{gathered}

\color{green}{\dag \:{\underline{\underline{\frak{Hence : }}}}}

  • \red\bigstar The Amount is Rs.18975.
  • \red\bigstar The Compound Interest is Rs.3975.

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{red}{Learn More:}}}}}}}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \dag \: \underline{\bf{More \: Useful \: Formula}}\\ {\boxed{\begin{array}{cc}\dashrightarrow {\sf{Amount = Principle + Interest}} \\ \\ \dashrightarrow \sf{ P=Amount - Interest }\\ \\ \dashrightarrow \sf{ S.I = \dfrac{P \times R \times T}{100}} \\ \\ \dashrightarrow \sf{P = \dfrac{Interest \times 100 }{Time \times Rate}} \\ \\ \dashrightarrow \sf{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}} \\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Answered by pkumarishaw
0

Answer:

may be helpful to you

...

Attachments:
Similar questions