Math, asked by akeertana503, 16 days ago

\begin{gathered}\large {\boxed{\sf{\mid{\overline {\underline {\star QUESTION ::}}}\mid}}}\end{gathered}


if \:  \:  \frac{1}{ log_{a}(x) }  +  \frac{1}{ log_{b}(x) }  =  \frac{2}{ log_{c}(x) }  \\  \\ prove \:  \: that \:  \: c {}^{2}  = ab

Answers

Answered by mathdude500
13

\large\underline{\sf{Given- }}

\rm :\longmapsto\:\dfrac{1}{ log_{a}(x) } + \dfrac{1}{ log_{b}(x) } = \dfrac{2}{ log_{c}(x) }

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\: {c}^{2}  = ab

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\dfrac{1}{ log_{a}(x) } + \dfrac{1}{ log_{b}(x) } = \dfrac{2}{ log_{c}(x) }

We know that,

\boxed{ \rm \:  log_{x}(y) =  \frac{1}{ log_{y}(x) } }

So, using this identity, we have

\rm :\longmapsto\: log_{x}(a) +  log_{x}(b) = 2 log_{x}(c)

Now, we know that

\boxed{ \rm \:  log_{x}(y) +  log_{x}(z) =  log_{x}(yz)}

So, using this identity, we get

\rm :\longmapsto\: log_{x}(ab)= 2 log_{x}(c)

Now, again we know that

\boxed{ \rm \: y log(x) =  log( {x}^{y} )}

Using this result, we get

\rm :\longmapsto\: log_{x}(ab)=  log_{x}( {c}^{2} )

Now, we know,

\boxed{ \rm \:  log_{a}(x) =  log_{a}(y)  \:  \implies \: x \:  =  \: y}

So, using this, identity,

\rm :\longmapsto\:ab =  {c}^{2}

\bf\implies \: {c}^{2}  = ab

Hence, Proved

Additional Information :-

\boxed{ \rm \: logx \:  +  \: logy \:  =  \: logxy}

\boxed{ \rm \: logx \:  -   \: logy \:  =  \: log \frac{x}{y} }

\boxed{ \rm \:  log_{x}(x) = 1}

\boxed{ \rm \:  log_{x}(y) =  \frac{logy}{logx} }

\boxed{ \rm \:  log_{ {x}^{a} }( {y}^{a} ) =  \frac{logy}{logx} =  log_{x}(y)  }

Answered by Anonymous
1

Answer:

hi Kia tum puneet ko jaanata ho?

〒_〒 agar jaanta ho toh plz baatao na wo reply q nhi kar raha hai

plz report maat Karo plz baatao na plz

Similar questions