Math, asked by kamalhajare543, 25 days ago


\begin{gathered} \rm If \: f(x) = \int \frac{5 {x}^{8} + 7 {x}^{6} }{( {x {}^{2} + 1 + 2 {x}^{7} {)}}^{2} } \: dx \\ \\ \rm (x \geqslant 0) \: and \: f(0) = 0\\ \end{gathered}



\rm Then \: Find \: the \: value \: of \: f(1)
✈ Hoping For a great Answer.
No spam. ​

Answers

Answered by ꜱᴄʜᴏʟᴀʀᴛʀᴇᴇ
13

ANSWER :-

\rm \int \frac{5 {x}^{8} + 7 {x}^{6} }{( {x {}^{2} + 1 + 2 {x}^{7} {)}}^{2} } \: \small dx \\  \\ \\   \int \frac{ {5x }^{ - 6 }  {  \: +  \: 7x}^{ - 8} }{ (\frac{1}{ {x}^{7} }  +  \frac{1}{{x}^{5} } + 2)^{2} } dx =  \frac{1}{2 +  \frac{1}{ {x}^{5} }  +  \frac{1}{ {x}^{7} }  }  + C \\  \\  \\ As \: f \: (0) \:  = 0, \: f \: (x) =  \frac{ {x}^{7} }{ {2x}^{7}  +  {x}^{2}  + 1}   \\  \\  \\ f \: (1) =  \frac{1}{4} (Ans)

Similar questions