Math, asked by sajan6491, 2 days ago

\begin{gathered} \rm2 {tan}^{ - 1} \bigg \{tan \frac{ \alpha }{2} \: . \: tan \bigg( \frac{\pi}{4} - \frac{ \beta }{2} \bigg) \bigg \} = {tan}^{ - 1} \bigg \{ \frac{sin \alpha \: . \: cos \beta }{cos \alpha + sin \beta } \bigg \} \\ \\ \end{gathered}

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Consider LHS

\rm2 {tan}^{ - 1} \bigg \{tan \frac{ \alpha }{2} \: . \: tan \bigg( \frac{\pi}{4} - \frac{ \beta }{2} \bigg) \bigg \} \\

We know,

\boxed{ \rm{ \: {2tan}^{ - 1}x  =  {tan}^{ - 1}\bigg(\dfrac{2x}{1 -  {x}^{2} } \bigg) \: }} \\

So, using this result, we get

\rm \:  =  {tan}^{ - 1}\bigg \{\dfrac{2tan\dfrac{ \alpha }{2}tan\bigg(\dfrac{\pi}{4} - \dfrac{ \beta }{2} \bigg) }{1 -  {tan}^{2} \dfrac{ \alpha }{2} {tan}^{2}\bigg(\dfrac{\pi}{4} - \dfrac{ \beta }{2}\bigg) }\bigg \}  \\

We know,

\boxed{ \rm{ \:tan\bigg(\dfrac{\pi}{4} - x\bigg)  =  \frac{1 - tanx}{1 + tanx}  \: }} \\

So, using this identity, we get

\rm \:  =  {tan}^{ - 1}\bigg \{\dfrac{2tan\dfrac{ \alpha }{2}\bigg(\dfrac{1 - tan\dfrac{ \beta }{2}}{1 + tan\dfrac{ \beta }{2}} \bigg) }{1 -  {tan}^{2} \dfrac{ \alpha }{2}  {\bigg[\dfrac{1 - tan\dfrac{ \beta }{2}}{1 + tan\dfrac{ \beta }{2}} \bigg]}^{2} }\bigg \}  \\

\rm \:  =  {tan}^{ - 1}\bigg \{\dfrac{2tan\dfrac{ \alpha }{2}\bigg(1 - tan\dfrac{ \beta }{2}\bigg) \bigg(1 + tan\dfrac{ \beta }{2} \bigg) }{ {\bigg(1 + tan\dfrac{ \beta }{2} \bigg)}^{2}  -  {tan}^{2}\dfrac{ \alpha }{2} {\bigg(1  -  tan\dfrac{ \beta }{2} \bigg)}^{2}  } \bigg \}

\rm \:  =  {tan}^{ - 1}\bigg \{\dfrac{2tan\dfrac{ \alpha }{2}\bigg(1 - tan^{2} \dfrac{ \beta }{2}\bigg) }{\bigg(1 +  {tan}^{2}\dfrac{ \beta }{2} + 2tan\dfrac{ \beta }{2}\bigg) -  {tan}^{2}\dfrac{ \alpha }{2}\bigg(1 +  {tan}^{2}\dfrac{ \beta }{2} - 2tan\dfrac{ \beta }{2}  \bigg) } \bigg \}

\rm \:  =  {tan}^{ - 1}\bigg \{\dfrac{2tan\dfrac{ \alpha }{2}\bigg(1 - tan^{2} \dfrac{ \beta }{2}\bigg) }{\bigg(1 -  {tan}^{2}\dfrac{ \alpha }{2}\bigg)  + {tan}^{2}\dfrac{ \beta }{2}  \bigg(1 -  {tan}^{2}\dfrac{ \alpha }{2}  \bigg)  +2tan\dfrac{ \beta }{2} \bigg(1 +  {tan}^{2} \dfrac{ \alpha }{2} \bigg) } \bigg \}

\rm \:  =  {tan}^{ - 1}\bigg \{\dfrac{2tan\dfrac{ \alpha }{2}\bigg(1 - tan^{2} \dfrac{ \beta }{2}\bigg) }{\bigg(1 -  {tan}^{2}\dfrac{ \alpha }{2}\bigg) \bigg(1 + {tan}^{2}\dfrac{ \beta }{2}  \bigg)  +2tan\dfrac{ \beta }{2} \bigg(1 +  {tan}^{2} \dfrac{ \alpha }{2} \bigg) } \bigg \} \\

\rm \:  =  {tan}^{ - 1} \: \dfrac{\dfrac{2tan\dfrac{ \alpha }{2}\bigg(1 - tan^{2} \dfrac{ \beta }{2}\bigg)}{\bigg(1  +   {tan}^{2}\dfrac{ \alpha }{2}\bigg) \bigg(1 + {tan}^{2}\dfrac{ \beta }{2}  \bigg) } }{\dfrac{\bigg(1 -  {tan}^{2}\dfrac{ \alpha }{2}\bigg) \bigg(1 + {tan}^{2}\dfrac{ \beta }{2}  \bigg)  +2tan\dfrac{ \beta }{2} \bigg(1 +  {tan}^{2} \dfrac{ \alpha }{2} \bigg) }{\bigg(1  +   {tan}^{2}\dfrac{ \alpha }{2}\bigg) \bigg(1 + {tan}^{2}\dfrac{ \beta }{2}  \bigg) } }  \\

can be rewritten as

\rm \:  =  {tan}^{ - 1}  \: \dfrac{\dfrac{2tan\dfrac{ \alpha }{2}}{1 +  {tan}^{2} \dfrac{ \alpha }{2}}  \times \dfrac{1 -  {tan}^{2} \dfrac{ \beta }{2}}{1 +  {tan}^{2} \dfrac{ \beta }{2}} }{\dfrac{1 -  {tan}^{2} \dfrac{ \alpha }{2}}{1 +  {tan}^{2}\dfrac{ \alpha }{2} }  + \dfrac{2tan\dfrac{ \beta }{2}}{1 +  {tan}^{2} \dfrac{ \beta }{2}} } \\

We know,

\boxed{ \rm{ \:sin2x =  \frac{2tanx}{1 +  {tan}^{2} x}  \: }} \\

and

\boxed{ \rm{ \:cos2x =  \frac{1 -  {tan}^{2} x}{1 +  {tan}^{2} x}  \: }} \\

So, using these results, we have

\rm \:  =  {tan}^{ - 1} \: \bigg( \dfrac{sin \alpha  \: cos \beta }{cos \alpha  + sin \beta } \bigg)  \\

Hence,

\boxed{ \rm{ \:\rm2 {tan}^{ - 1} \bigg \{tan \frac{ \alpha }{2}. tan \bigg( \frac{\pi}{4} - \frac{ \beta }{2} \bigg) \bigg \}  =  {tan}^{ - 1}  \bigg( \dfrac{sin \alpha  \: cos \beta }{cos \alpha  + sin \beta } \bigg)}}  \\

Similar questions