Math, asked by Anonymous, 7 hours ago

\begin{gathered} \sf{If \: u = x\Phi( \frac{y}{x} ) + \Psi( \frac{y}{x} ) \: then \: find} \\ \sf{x}^{2} \frac{ \partial^{2} u}{ \partial {x}^{2} } + 2xy \frac{ \partial {}^{2} u}{ \partial x \cdot \partial y} + {y}^{2} { \frac{\partial^{2} u}{\partial {y}^{2} } } \end{gathered}

Answers

Answered by rameshrajput16h
1

Answer:

then the complement of it = 90-x . given an angle is equal to 5 times it's it's complement. x= 75. hence the measure of an angel=7

Answered by LaeeqAhmed
3

 \sf \: u = x\Phi( \frac{y}{x} ) + \Psi( \frac{y}{x})

    \\ \implies  \sf \frac{∂ ^{2}u }{∂ {x}^{2}  }  = \frac{∂ ^{2} }{∂ {x}^{2}  } [ \sf \:  x\Phi (\frac{y}{x} ) + \Psi( \frac{y}{x})]

 \implies  \sf \frac{∂ ^{2}u }{∂ {x}^{2}  }  = 0   +  2  \Psi y \frac{1}{ {x}^{3} }

 \implies  \sf \frac{∂ ^{2}u }{∂ {x}^{2}  }  =  \frac{  2  \Psi y}{  {x}^{3}  } \:  \: ...(1)

    \\ \implies \sf\frac{ \partial {}^{2} u}{ \partial x \cdot \partial y}  =  \frac{ \partial }{ \partial x} (\frac{ \partial u }{ \partial y} )

 \implies \sf\frac{ \partial {}^{2} u}{ \partial x \cdot \partial y}  =  \frac{ \partial }{ \partial x} (\frac{ \partial u }{ \partial y} )

\implies \sf\frac{ \partial {}^{2} u}{ \partial x \cdot \partial y}  =  \frac{ \partial }{ \partial x}    [ \frac{ \partial  }{ \partial y}(\sf \:  x\Phi (\frac{y}{x} ) + \Psi( \frac{y}{x}))    ]

 \implies \sf\frac{ \partial {}^{2} u}{ \partial x \cdot \partial y}  =  \frac{ \partial }{ \partial x}    [ \Phi + \frac{ \Psi}{x}   ]

 \implies \sf\frac{ \partial {}^{2} u}{ \partial x \cdot \partial y}  = 0  -  \frac{ \Psi}{x ^{2} }

 \implies \sf\frac{ \partial {}^{2} u}{ \partial x \cdot \partial y}  = -  \frac{ \Psi}{x ^{2} } \:  \:  ...(2)

    \\ \implies  \sf \frac{∂ ^{2}u }{∂ {y}^{2}  }  = \frac{∂ ^{2} }{∂ {y}^{2}  } [ \sf \:  x\Phi (\frac{y}{x} ) + \Psi( \frac{y}{x})]

\implies  \sf \frac{∂ ^{2}u }{∂ {y}^{2}  }  = 0 + 0

\implies  \sf \frac{∂ ^{2}u }{∂ {y}^{2}  }  = 0  \:  \: ...(3)

 \sf \purple{from \:  \: (1) \: (2) \: and \: (3)}

\sf{x}^{2} \frac{ \partial^{2} u}{ \partial {x}^{2} } + 2xy \frac{ \partial {}^{2} u}{ \partial x \cdot \partial y} + {y}^{2} { \frac{\partial^{2} u}{\partial {y}^{2}}}

 \implies\sf{x}^{2} (\frac{  2  \Psi y}{  {x}^{3}  } ) + 2xy   (-  \frac{ \Psi}{x ^{2} }) + {y}^{2} (0)

 \implies\sf \frac{  2  \Psi y}{  {x}  }  -       \frac{ 2\Psi y}{x  } +0

 \therefore\sf 0

 \orange {\therefore \sf{x}^{2} \frac{ \partial^{2} u}{ \partial {x}^{2} } + 2xy \frac{ \partial {}^{2} u}{ \partial x \cdot \partial y} + {y}^{2} { \frac{\partial^{2} u}{\partial {y}^{2}}} = 0}

HOPE IT HELPS!!

Similar questions