Attachments:
Answers
Answered by
7
Answered by
1
Answer:
\begin{lgathered}\underline{\underline{\mathfrak{\Large{Solution : }}}}\\ \\ \sf\: Given, \\ \\ \sf\implies\: 4 + log_{2} (3x) = 10 \\ \\ \sf\implies\: log_{2} (3x) = 10 - 4 \\ \\ \sf\implies\: log_{2} (3x) = 6 \\ \\ \underline {\sf { Use\: definition\: of\:Common\:Logarithm :}} \\ \\ \sf\implies\: 3x = 2^6 \\ \\ \sf\implies\: 3x = 64 \\ \\ \sf\implies\: x = \dfrac {64}{3} \\ \\ \underline {\sf {Formula \:used :}} \\ \\ \sf\: b^a = x \: if \: and \: only \: if \: log_b(x) = a\end{lgathered}
Solution:
Given,
⟹4+log
2
(3x)=10
⟹log
2
(3x)=10−4
⟹log
2
(3x)=6
UsedefinitionofCommonLogarithm:
⟹3x=2
6
⟹3x=64
⟹x=
3
64
Formulaused:
b
a
=xifandonlyiflog
b
(x)=a
Similar questions
Computer Science,
6 months ago
Biology,
1 year ago
Chemistry,
1 year ago
Math,
1 year ago
Math,
1 year ago