Math, asked by mailforsabah786, 2 months ago


 \bf{Answer \: this \:correctly \:  and \: do \: not \: spam}

Attachments:

Answers

Answered by Tomboyish44
16

Answer:

-224

Prerequisite knowledge:

  • (a - b)³ = a³ - b³ - 3ab(a - b)
  • Negative × Negative = Positive
  • Positive × Negative = Negative
  • The cube of any negative natural number will be negative.

Step-by-step explanation:

We've been given that;

  • (a - b) = -8
  • ab = 12

And we're asked to find the value of a³ - b³.

ATQ;

\sf \dashrightarrow (a - b) = -8

We're asked to find the value of a³ and b³, so we'll need both these terms in the equation. We can cube both sides of the equation to achieve that.

\sf \dashrightarrow (a - b)^{\bf{3}} = (-8)^{\bf{3}}

On applying the identity (a - b)³ = a³ - b³ - 3ab(a - b) we get;

\sf \dashrightarrow (a)^3 - (b)^3 - 3ab(a - b) = (-8)^3

\sf \dashrightarrow a^3 - b^3 - 3ab(a - b) = 512

We know that;

  • a - b = -8
  • ab = 12

On substituing both these values we get;

\sf \dashrightarrow a^3 - b^3 - 3(12)(-8) = 512

\sf \dashrightarrow a^3 - b^3 - 3(-96) = 512

\sf \dashrightarrow a^3 - b^3 + 288 = 512

On transposing 288 to the RHS we get;

\sf \dashrightarrow a^3 - b^3 = 512 - 288

\sf \dashrightarrow \textsf{\textbf{a}}^3 - \textsf{\textbf{b}}^3 = \textsf{\textbf{-224}}

Therefore, the answer is Option(1): -224

Answered by TrueRider
23

 \bf \color{navy}Answer:

  \huge\tt \color{red}-244

 \bf \color{navy}Step-by-step \: explanation:

 \bf(a - b) \: =  - 8, \: ab = 12

 \bf {a}^{3} -  {b}^{3}  =  {(a - b)}^{3}  + 3ab \: (a-b)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf= (-8)^{3}  + 3 (-12) (-8)

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf= -512 + 288

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \bf= -224

Similar questions