Answers
___________________________
Formula Used:-
________________________________
Step-by-step explanation:
Lety=e
log(x+
x
2
+a
2
)
\begin{gathered}\sf\implies \:y = log(x + \sqrt{ {x}^{2} + {a}^{2} } ) \\\\\end{gathered}
⟹y=log(x+
x
2
+a
2
)
\begin{gathered}\sf \:Differnatiate \: w.r.t. \: x\\\\\end{gathered}
Differnatiatew.r.t.x
\begin{gathered}\sf\implies \:\dfrac{dy}{dx} = \dfrac{d}{dx} log(x + \sqrt{ {x}^{2} + {a}^{2} } ) \\\\\end{gathered}
⟹
dx
dy
=
dx
d
log(x+
x
2
+a
2
)
\begin{gathered}\sf\implies \:\dfrac{dy}{dx} = \dfrac{1}{x + \sqrt{ {x}^{2} + {a}^{2} } } \dfrac{d}{dx}( x + \sqrt{ {x}^{2} + {a}^{2} } )\\\\\end{gathered}
⟹
dx
dy
=
x+
x
2
+a
2
1
dx
d
(x+
x
2
+a
2
)
\begin{gathered}\sf\implies \:\dfrac{dy}{dx} = \dfrac{1}{x + \sqrt{ {x}^{2} + {a}^{2} } } (1 + \dfrac{1}{2 \sqrt{ {x}^{2} + {a}^{2} } } \dfrac{d}{dx} ( {x}^{2} + {a}^{2} )\\\\\end{gathered}
⟹
dx
dy
=
x+
x
2
+a
2
1
(1+
2
x
2
+a
2
1
dx
d
(x
2
+a
2
)
\begin{gathered}\sf\implies \:\dfrac{dy}{dx} = \dfrac{1}{x + \sqrt{ {x}^{2} + {a}^{2} } } (1 + \dfrac{1}{2 \sqrt{ {x}^{2} + {a}^{2} } }(2x))\\\\\end{gathered}
⟹
dx
dy
=
x+
x
2
+a
2
1
(1+
2
x
2
+a
2
1
(2x))
\begin{gathered}\sf\implies \:\dfrac{dy}{dx} = \dfrac{1}{x + \sqrt{ {x}^{2} + {a}^{2} } } (1 + \dfrac{x}{ \sqrt{ {x}^{2} + {a}^{2} } })\\\\\end{gathered}
⟹
dx
dy
=
x+
x
2
+a
2
1
(1+
x
2
+a
2
x
)
\begin{gathered}\sf\implies \:\dfrac{dy}{dx} = \dfrac{1}{x + \sqrt{ {x}^{2} + {a}^{2} } } ( \dfrac{x + \sqrt{ {x}^{2} + {a}^{2} } }{ \sqrt{ {x}^{2} + {a}^{2} } })\\\\\end{gathered}
⟹
dx
dy
=
x+
x
2
+a
2
1
(
x
2
+a
2
x+
x
2
+a
2
)
\begin{gathered}\sf\implies \:\dfrac{dy}{dx} = \dfrac{1}{ \sqrt{ {x}^{2} + {a}^{2} } } \\\\\end{gathered}
⟹
dx
dy
=
x
2
+a
2
1
___________________________
Formula Used:-
\begin{gathered}\sf \:\dfrac{d}{dx} {x}^{n } = n {x}^{n - 1} \\\\\end{gathered}
dx
d
x
n
=nx
n−1
\begin{gathered}\sf \:\dfrac{d}{dx} log(x) = \dfrac{1}{x}\\\\ \end{gathered}
dx
d
log(x)=
x
1
\begin{gathered}\sf \:\dfrac{d}{dx} \sqrt{x} = \dfrac{1}{2 \sqrt{x} }\\\\ \end{gathered}
dx
d
x
=
2
x
1
\begin{gathered}\sf \:\dfrac{d}{dx}k = 0\\\\\end{gathered}
dx
d
k=0
\begin{gathered}\sf \: {e}^{ log(x) } = x\\\\\end{gathered}
e
log(x)
=x