Math, asked by Anonymous, 1 day ago


 \bf \displaystyle \int \bf\frac{1}{16 + {x}^{2} } .dx = \frac{1}{P} { \: tan}^{ - 1} \bigg( \frac{x}{Q} \bigg) + C \\  \\   \bf \: then \: find \: (P + Q)

Don't spam..!! ​

Answers

Answered by mathdude500
28

\large\underline{\sf{Solution-}}

Given that,

\rm \: \displaystyle \int \rm\frac{1}{16 + {x}^{2} }dx = \frac{1}{P} { \: tan}^{ - 1} \bigg( \frac{x}{Q} \bigg) + C

Now, Consider

\rm \: \displaystyle \int \rm\frac{1}{16 + {x}^{2} } dx

To evaluate this integral, we use Method of Substitution

So, Substitute

\rm \: x = 4 \: tany \: \rm\implies \:y \:  =  \:  {tan}^{ - 1}\dfrac{x}{4}

So,

\rm \: dx = 4 \:  {sec}^{2}y \: dy

So, on substituting these values, we get

\rm \:  =  \: \displaystyle \int \rm \:  \frac{4 \:  {sec}^{2}y \: dy }{16 + 16 {tan}^{2} y}

\rm \:  =  \: \displaystyle \int \rm \:  \frac{4 \:  {sec}^{2}y \: dy }{16(1 +  {tan}^{2} y)}

\rm \:  =  \:\dfrac{1}{4}  \displaystyle \int \rm \:  \frac{\:  {sec}^{2}y \: dy }{{sec}^{2} y}

\rm \:  =  \:\dfrac{1}{4}  \displaystyle \int \rm \:  dy

\rm \:  =  \:\dfrac{1}{4}y \:  +  \: c

\rm \:  =  \: \dfrac{1}{4} {tan}^{ - 1}\dfrac{x}{4} + c

Thus,

\rm \: \displaystyle \int \rm\frac{1}{16 + {x}^{2} } dx = \frac{1}{4} { \: tan}^{ - 1} \bigg( \frac{x}{4} \bigg) + C

As, it is given that

\rm \: \displaystyle \int \rm\frac{1}{16 + {x}^{2} }dx = \frac{1}{P} { \: tan}^{ - 1} \bigg( \frac{x}{Q} \bigg) + C

So, on comparing we get

\rm\implies \:P = 4 \:  \: and \:  \: Q = 4

So,

\rm\implies \:P + Q = 4 + 4 = 8

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

SHORT CUT TRICK

We know

\displaystyle \int \rm \frac{dx}{ {x}^{2}  +  {a}^{2} } =  \frac{1}{a} {tan}^{ - 1} \frac{x}{a} + c

So, using this result, we get

\rm \: \displaystyle \int \rm\frac{1}{16 + {x}^{2} } dx = \frac{1}{4} { \: tan}^{ - 1} \bigg( \frac{x}{4} \bigg) + C

As it is given that

\rm \: \displaystyle \int \rm\frac{1}{16 + {x}^{2} }dx = \frac{1}{P} { \: tan}^{ - 1} \bigg( \frac{x}{Q} \bigg) + C

So, on comparing, we get

\rm\implies \:P = 4 \:  \: and \:  \: Q = 4

So,

\rm\implies \:P + Q = 4 + 4 = 8

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions