Math, asked by Anonymous, 11 hours ago


\bf \: evaluate \:: \\ \displaystyle \rm = \int \frac{dx}{ 2 \sqrt{x}( \sqrt{x +  {1}^{3} )}   }

Step by step explanation needed! ​

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle \rm  \int \frac{dx}{ 2 \sqrt{x}( \sqrt{x + {1}^{3} )} }

can be rewritten as

\rm \:  =  \: \displaystyle \rm  \int \frac{dx}{ 2 \sqrt{x}\sqrt{x +1} }

can be further rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{dx}{2 \sqrt{ {x}^{2} + x } }

Now, to evaluate this integral, we use method of Completing squares.

So, above integral can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{dx}{2 \sqrt{ {x}^{2} + x +  \dfrac{1}{4} -  \dfrac{1}{4}  } }

\rm \:  =  \: \displaystyle\int\rm  \frac{dx}{2 \sqrt{ {\bigg[x + \dfrac{1}{2} \bigg]}^{2} -  {\bigg[\dfrac{1}{2} \bigg]}^{2}  } }

We know,

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ \sqrt{ {x}^{2}  -  {a}^{2} } } = log  \bigg|x +  \sqrt{ {x}^{2}  -  {a}^{2} } \bigg |   + c}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{2}log \bigg |x + \dfrac{1}{2} +  \sqrt{ {\bigg[x + \dfrac{1}{2} \bigg]}^{2}  -  {\bigg[\dfrac{1}{2} \bigg]}^{2} }  \bigg|  + c

\rm \:  =  \: \dfrac{1}{2}log \bigg |x + \dfrac{1}{2} +  \sqrt{  {x}^{2} + x}  \bigg|  + c

\rm \:  =  \: \dfrac{1}{2}log \bigg |\dfrac{2x + 1 +  \sqrt{ {x}^{2} + x } }{2} \bigg|  + c

\rm \:  =  \: \dfrac{1}{2}log \bigg |2x + 1 +  \sqrt{ {x}^{2} + x } \bigg| -  \dfrac{1}{2}log2   + c

\rm \:  =  \: \dfrac{1}{2}log \bigg |2x + 1 +  \sqrt{ {x}^{2} + x } \bigg|  + d \\  \\ \boxed{\tt{ where \: d = c -  \frac{1}{2}log2 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ \sqrt{ {x}^{2}  -  {a}^{2} } } = log  \bigg|x +  \sqrt{ {x}^{2}  -  {a}^{2} } \bigg |   + c}}

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ \sqrt{ {x}^{2} + {a}^{2} } } = log  \bigg|x +  \sqrt{ {x}^{2} + {a}^{2} } \bigg |   + c}}

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ \sqrt{ {a}^{2} - {x}^{2} } } =  {sin}^{ - 1} \dfrac{x}{a}+ c}}

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ {x}^{2}  +  {a}^{2} }  =  \frac{1}{a} {tan}^{ - 1} \frac{x}{a} + c}}

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ {x}^{2} - {a}^{2} }  =  \frac{1}{2a} log\bigg | \frac{x - a}{x + a} \bigg|  + c}}

Answered by EmperorSoul
1

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle \rm  \int \frac{dx}{ 2 \sqrt{x}( \sqrt{x + {1}^{3} )} }

can be rewritten as

\rm \:  =  \: \displaystyle \rm  \int \frac{dx}{ 2 \sqrt{x}\sqrt{x +1} }

can be further rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{dx}{2 \sqrt{ {x}^{2} + x } }

Now, to evaluate this integral, we use method of Completing squares.

So, above integral can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{dx}{2 \sqrt{ {x}^{2} + x +  \dfrac{1}{4} -  \dfrac{1}{4}  } }

\rm \:  =  \: \displaystyle\int\rm  \frac{dx}{2 \sqrt{ {\bigg[x + \dfrac{1}{2} \bigg]}^{2} -  {\bigg[\dfrac{1}{2} \bigg]}^{2}  } }

We know,

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ \sqrt{ {x}^{2}  -  {a}^{2} } } = log  \bigg|x +  \sqrt{ {x}^{2}  -  {a}^{2} } \bigg |   + c}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{2}log \bigg |x + \dfrac{1}{2} +  \sqrt{ {\bigg[x + \dfrac{1}{2} \bigg]}^{2}  -  {\bigg[\dfrac{1}{2} \bigg]}^{2} }  \bigg|  + c

\rm \:  =  \: \dfrac{1}{2}log \bigg |x + \dfrac{1}{2} +  \sqrt{  {x}^{2} + x}  \bigg|  + c

\rm \:  =  \: \dfrac{1}{2}log \bigg |\dfrac{2x + 1 +  \sqrt{ {x}^{2} + x } }{2} \bigg|  + c

\rm \:  =  \: \dfrac{1}{2}log \bigg |2x + 1 +  \sqrt{ {x}^{2} + x } \bigg| -  \dfrac{1}{2}log2   + c

\rm \:  =  \: \dfrac{1}{2}log \bigg |2x + 1 +  \sqrt{ {x}^{2} + x } \bigg|  + d \\  \\ \boxed{\tt{ where \: d = c -  \frac{1}{2}log2 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ \sqrt{ {x}^{2}  -  {a}^{2} } } = log  \bigg|x +  \sqrt{ {x}^{2}  -  {a}^{2} } \bigg |   + c}}

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ \sqrt{ {x}^{2} + {a}^{2} } } = log  \bigg|x +  \sqrt{ {x}^{2} + {a}^{2} } \bigg |   + c}}

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ \sqrt{ {a}^{2} - {x}^{2} } } =  {sin}^{ - 1} \dfrac{x}{a}+ c}}

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ {x}^{2}  +  {a}^{2} }  =  \frac{1}{a} {tan}^{ - 1} \frac{x}{a} + c}}

\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ {x}^{2} - {a}^{2} }  =  \frac{1}{2a} log\bigg | \frac{x - a}{x + a} \bigg|  + c}}

Similar questions