Math, asked by Anonymous, 1 day ago

\bf \: evaluate \: the \: definate \: integral \ \: : \\ \displaystyle \rm = \int \frac{1}{ \sqrt{4 - {x}^{2} } } \: dx

No spam..!! ​

Answers

Answered by YourHelperAdi
20

To Evalute :

 {\displaystyle  \rm \int \frac{1}{ \sqrt{4 - {x}^{2} } } \: dx}

Let's Assume :

 \tt{ \bull \frac{x}{2}  = sin \:u}

 \tt{  \bull\frac{dx}{2}  = cos  \: u \times du}

 \implies \tt{dx = 2cos(u)du}

 \tt{ \bull x = 2sin(u)}

Let's StarT :

We can solve this types of integral by using the trigonometric fluctuations assuming them.

Now, as we assumed earlier (see the let's Assume part ) , we will substitute the values here .

we will also use the identity:

Sin²A+Cos²A = 1

or, Cos²A = 1-sin²A

 {\displaystyle  \rm \int \frac{1}{ \sqrt{4 - {x}^{2} } } \: dx}

 \tt{ \displaystyle \rm =  \int \:  \frac{1}{ \sqrt{4(1 -  \frac{ {x}^{2} }{4}) } }dx}

 \tt{ \displaystyle \rm =  \int  \frac{1}{2 \sqrt{1 - (  \frac{x}{2}   {)}^{2} }}dx}

 \tt{ \displaystyle \rm =  \int \:  \frac{1}{2 \sqrt{1 - (sin \: u {)}^{2} } }  \: 2cos(u)du}

 \tt{  \displaystyle \rm =  \int \:  \frac{1}{ \cancel{2} \sqrt{1 - si {n}^{2} u } }   \: \cancel{2}cos(u)du}

 \tt{ \displaystyle \rm =  \int \:  \frac{1}{ \sqrt{co {s}^{2}(u) } }  \: cos(u)du}

 \tt{ \displaystyle \rm =  \int \:  \frac{1}{cos(u)}  \: cos(u)du}

 \tt{ \displaystyle  \rm =  \int \:  \frac{1}{ \cancel{cos(u)}} \:   \: \cancel{cos(u)}du}

 \tt{ \displaystyle \rm =  \int \: 1du}

 \tt{  \rm = u +  c}

Here, We got the result as u+c, so as we know,

if x/2 is sin u , then u is arcsin x/2

 \tt{ = si {n}^{ - 1}( \frac{x}{2} )  + c}

   \tt{ = arcsin( \frac{x}{2})  + c}

Hence,

 \blue{\underline{\boxed{ \therefore\displaystyle  \rm \int \frac{1}{ \sqrt{4 - {x}^{2} } } \: dx = arcsin (\frac{x}{2})  + c}}}

Hope it help you!

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{dx}{ \sqrt{4 -  {x}^{2} } }

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{dx}{ \sqrt{ {2}^{2}  -  {x}^{2} } }

We know,

\rm :\longmapsto\:\boxed{\tt{ \:  \:  \displaystyle\int\rm  \frac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } }  =  {sin}^{ - 1} \frac{x}{a} \:  +  \: c \: }} \\

So, using this result, we get

\rm \:  =  \:  {sin}^{ - 1}\dfrac{x}{2} + c

Hence,

\rm\implies \:\boxed{\tt{ \displaystyle\int\rm  \frac{dx}{ \sqrt{4 -  {x}^{2} } } \rm \:  =  \:  {sin}^{ - 1}\dfrac{x}{2} + c \: }}

Note :-

Let we derive an expression for integration of

\rm :\longmapsto\:\displaystyle\int\rm  \frac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } }

To evaluate this integral, we use method of Substitution.

So, Substitute

 \purple{\rm :\longmapsto\:x = a \: siny}

 \purple{\rm :\longmapsto\:dx = a \: cosy \: dy}

So, on substituting the values, we get

\rm \:  =  \: \displaystyle\int\rm  \frac{a \: cosy \: dy}{ \sqrt{ {a}^{2}  -  {a}^{2}  {sin}^{2}y } }

\rm \:  =  \: \displaystyle\int\rm  \frac{a \: cosy \: dy}{ \sqrt{ {a}^{2}(1-{sin}^{2}y)} }

\rm \:  =  \: \displaystyle\int\rm  \frac{a \: cosy \: dy}{ \sqrt{ {a}^{2}{cos}^{2}y} }

\rm \:  =  \: \displaystyle\int\rm  \frac{a \: cosy \: dy}{ a \: cosy }

\rm \:  =  \: \displaystyle\int\rm dy

\rm \:  =  \: y \:  +  \: c

\rm \:  =  \:  {sin}^{ - 1}\dfrac{x}{a} + c

Hence,

\rm :\longmapsto\:\boxed{\tt{ \:  \:  \displaystyle\int\rm  \frac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } }  =  {sin}^{ - 1} \frac{x}{a} \:  +  \: c \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions