Math, asked by Anonymous, 2 days ago


 \bf \: Evaluate \:  the \:  integral: \\  \sf{ \displaystyle \int \frac{ \int \limits_ 0^x \tan^{ -1}t \: dt}{ {x}^{3} } dx}
 \:
Try to Solve it !!
 \:

Answers

Answered by sajan6491
25

{ \bold \red{\displaystyle \int \frac{ \int \limits_0^x \tan^{ -1}t \: dt}{ {x}^{3} } dx}}

\bold \red{ \displaystyle I_1 = \int \limits_0^x tan^{-1}tdt}

\red{ I_1 =\displaystyle \left[\dfrac{1}{1+ t^2}\right]^x_{0}}

\red{ I_1 =\displaystyle \left[\dfrac{1}{1+x^2} - \dfrac{1}{1+0^2}\right]}

\red{ I_1 =\dfrac{1}{1+x^2} - 1}

\red{I_1=\dfrac{1-1-x^2}{1+x^2}}

\red{ I_1=\dfrac{-x^2}{1+x^2}}

\red{ I = \displaystyle \int \dfrac{-x^2}{(1+x^2)x^3}}

\red{I = -\displaystyle \int \dfrac{1}{x(1+x^2)}}

\red{ I =- \displaystyle \int \dfrac{1}{x} - \dfrac{x}{1+x^2} dx}

\red{I = -\displaystyle \int \dfrac{1}{x} dx + \int \dfrac{x}{1+x^2}dx}

\red{I = \displaystyle - log|x| + C_1 + \int \dfrac{x}{1+x^2}dx}

\red{ I = \displaystyle -log|x| + C_1 + \int \dfrac{du}{2u}}

\red{ I = -log|x| + C_1 + \dfrac{log|u|}{2} + C_2}

\red{ I = -log|x| + \dfrac{log|1+x^2|}{2} + C}

\red{{\displaystyle I = log|x| + \dfrac{log|1+x^2|}{2} + C}}

Similar questions