Math, asked by Anonymous, 1 month ago

\bf\fbox\red{Question:-}
Find a quadratic polynomial with zeroes as  \sqrt{2} , \frac{ - 3}{ \sqrt{2} } ?

Answers

Answered by BrainlyMilitary
10

Given : The Zeroes of Polynomial are  \bf  \sqrt{2} \:\:\&\:\: \dfrac{ - 3}{ \sqrt{2} }

Exigency To Find : The Quadratic Polynomial .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's Consider the zeroes of the polynomial be  \alpha \:\:and \:\:\beta \: .

\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\ \qquad\bigstar\:\:\bf Quadratic\:Polynomial\:: \\

\qquad \dag\:\:\bigg\lgroup \sf{ Quadratic \:Polynomial \: =\:\: x^2 - ( \: \alpha \:+ \beta \:)x \: + ( \:\alpha \times \:\beta \:) \:\:=0\:}\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here ,  \: \alpha  + \beta \: is the sum of Zeroes ,  \: \alpha  \times  \beta \: is the product of Zeroes &  \alpha \:\:and \:\:\beta \: are zeroes of Polynomial.

⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀Now ,

⠀⠀⠀⠀⠀

\qquad \maltese\:\:\textsf{Sum of Zeroes :} \\\\\dashrightarrow\sf\:\:\alpha +\beta \\\\\\\dashrightarrow\sf \bigg( \sqrt{2} \bigg) + \bigg(\dfrac{-3}{\sqrt{2}} \bigg)  \\\\\\\dashrightarrow \sf \bigg( \dfrac{ 2  - 3 }{\sqrt{2}} \bigg)\\\\\\\dashrightarrow \sf \bigg( \dfrac{ -1 }{\sqrt{2}} \bigg) \\\\\\\dashrightarrow{\underline{\boxed{\frak{\:\:\alpha + \beta \:\:=\:\:\dfrac{-1}{\sqrt{2}} }}}}

⠀⠀⠀AND ,

\qquad \maltese\:\:\textsf{Product of Zeroes :}\\\\\dashrightarrow\sf\:\:\alpha\beta \\\\\\\dashrightarrow\sf \bigg(\sqrt {2} \bigg) \times \bigg(\dfrac{-3 \: \: }{ \: \: \sqrt{2} \: \: }\bigg) \\\\\\\dashrightarrow\sf  \bigg(\dfrac{-3\: \times \:\sqrt{2} \: }{ \: \: \sqrt{2} \: \: }\bigg)  \\\\\\\dashrightarrow\sf  \bigg(\dfrac{-3 \times \cancel {\sqrt{2}} \: \: }{ \: \: \cancel{\sqrt{2} }\: \: }\bigg)  \\\\\\\dashrightarrow{\underline{\boxed{\frak{\alpha \beta \:\:\:= \:\: -3 }}}}

\qquad \dashrightarrow \:\sf Quadratic \:Polynomial \: =\:\: x^2 - ( \: \alpha \:+ \beta \:) x\: + ( \:\alpha \times \:\beta \:) \:=\:0\:\\\\

\qquad \dashrightarrow \:\sf \:\: x^2 - ( \: \alpha \:+ \beta \:)x \: + ( \:\alpha \times \:\beta \:) \:=\:0\:\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \:\sf \:\: x^2 - ( \: \alpha \:+ \beta \:)x \: + ( \:\alpha \times \:\beta \:) \:=\:0\:\\\\⠀⠀

\qquad \dashrightarrow \:\sf \:\: x^2 - \bigg( \: -\dfrac{1}{\sqrt{2}}\:\bigg)x \: + ( \:-3 \:) \:=\:0\:\\\\

\qquad \dashrightarrow \:\sf \:\: x^2 - \bigg( \: -\dfrac{1}{\sqrt{2}}\:\bigg)x \: + ( \:-3 \:) \:=\:0\:\\\\

\qquad \dashrightarrow \:\sf \:\: x^2  \: +\dfrac{1}{\sqrt{2}}\: x\: \:-3 \: \:=\:0\:\\\\

\qquad \dashrightarrow \:\sf \:\: \dfrac{\sqrt{2}x^2 \:\: + \: 1 x\: - \: 3 \sqrt{2}\:}{\sqrt{2}}\: \: \: \:=\:0\:\\\\

\qquad \dashrightarrow \:\sf \:\: \sqrt{2}x^2 \:\: + \: x\: - \: 3 \sqrt{2}\:\: \: \: \:=\:0\:\times \:\sqrt{2}\\\\

\qquad \dashrightarrow \:\sf \:\: \sqrt{2}x^2 \:\: + \: x\: - \: 3 \sqrt{2}\:\: \: \: \:=\:0\:\\\\

\qquad \dashrightarrow \pmb{\underline{\purple{\: Quadratic\:Polynomial\: =\:\sqrt{2}x^2 \:\: +\: x\: - \: 3 \sqrt{2}\:\: }} }\:\;\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Hence,\:The \:Quadratic \:Polynomial \:is\:\bf{ \:\sqrt{2}x^2 \:\: +\: x\: - \: 3 \sqrt{2}\:\: }}.}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

\qquad \qquad \boxed {\begin{array}{cc} \bf{\underline {\bigstar\:\: For \: a \:Quadratic \:Polynomial \::}}\\\\ \sf{ Whose \:\:zeroes \:\:are\:\:\alpha \:\&\;\: \beta\:\:} \\\\ 1)\:\: \alpha + \beta \: =\:\dfrac{-b}{a} \quad \bigg\lgroup \bf Sum\:of\;Zeroes \bigg\rgroup \\\\ 2)\:\: \alpha \times \beta \: =\:\dfrac{c}{a} \quad \bigg\lgroup \bf Product \:of\;Zeroes \bigg\rgroup \\\\ \end{array}}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Answered by SweetestBitter
26

\huge\color{cyan}\boxed{\colorbox{black}{Answer :-}}

Given : Two zeros of the polynomial

 \sqrt{2}  \: and \:  \frac{ - 3}{ \sqrt{2} }

Exigency To Find : The quadratic polynomial with its two roots as √2 and -3/√2.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀

Let α=  \sqrt{2} \: and \: β=  \frac{ - 3}{ \sqrt{2} }  \\  \\α+β= \sqrt{2}  +  \frac{ - 3}{ \sqrt{2} }   \\  \\ =  \frac{2 - 3}{ \sqrt{2} } \\   \\   =   \frac{ - 1}{ \sqrt{2} }    \\  \\ and \:  \\  \\  α⋅β=( \sqrt{2} )×( \frac{ - 3}{ \sqrt{2} } ) \\  \\  = - 3 \\  \\

 The \:  required  \: quadratic  \: equation \:  is \:  \\ {x}^{2} −(α+β)x+α⋅β=0 \\  \\

⠀⠀⠀⠀⠀⠀

\begin{gathered}\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\end{gathered}

⇒  {x}^{2} −(− \frac{1}{ \sqrt{2} } )x+( - 3)=0 \\  \\ ⇒{x}^{2}+ \frac{1}{ \sqrt{2} } x - 3=0 \\  \\ ⇒ \sqrt{2} {x}^{2} + x - 3 \sqrt{2} =0

★ Therefore, \begin{gathered}\therefore {\underline{ \mathrm {\:Hence,\:the \: polynomial \: is \: \bf{ \sqrt{2}x ^{2} +x - 3 \sqrt{2}   }}\:\: \:\:.}}\\\end{gathered}

Similar questions