Math, asked by Anupama501, 8 days ago

\bf{\frac{ {x}^{ \frac{1}{3} } \sqrt{ {x}^{5} } }{ {x}^{1.5}}}\\

Answers

Answered by krishpmlak
0

Answer:

Step-by-step explanation:

Answered by Salmonpanna2022
2

Step-by-step explanation:

 \bf \underline{Given-} \\

  \sf\cfrac{ {x}^{ \frac{1}{3} }  \sqrt{ {x}^{5} } }{ {x}^{1.5} }

 \bf \underline{To \: find-} \\

\textsf{the value of x = ?}

 \bf \underline{Solution-} \\

 \sf→ \cfrac{ {x}^{ \frac{1}{3} }  \sqrt{ {x}^{5} } }{ {x}^{1.5} }

 \sf→\cfrac{ {x}^{ \frac{1}{3} }  \sqrt{ {x}^{4} x} }{ {x}^{ \frac{15}{10} } }

\sf→\cfrac{ {x}^{ \frac{1}{3} }  \sqrt{ ({x}^{2})^{2}  x} }{ {x}^{ \frac{3}{2} } }

\sf→\cfrac{ {x}^{ \frac{1}{3} }  \times  {x}^{2} \times     {x}^{ \frac{1}{2} }  }{ {x}^{ \frac{3}{2} } } \

\sf→\cfrac{ {x}^{ \frac{2 + 12 + 3}{6} }  }{ {x}^{ \frac{3}{2} } }

\sf{→ {x}^{  \frac {17}{6} } \div  {x}^{ \frac{3}{2} }   }

\sf{ →{x}^{  \frac {17}{6}  -  \frac{3}{2} }   }

\sf{→ {x}^{  \frac {17 - 9}{ 6}   }   }

\sf{ →{x}^{  \frac {8}{ 6}   }   }

\bf{→ {x}^{  \frac {4}{3}   }}\\\\

 \bf \underline{Hence, the\: value\: of\: X \: is\: {x}^{  \frac {4}{3}}} \\

Similar questions