Math, asked by Anonymous, 18 days ago

\bf {Hola\: Brainlians !}
Here I came back with one interesting question. .Plz help me !!
1 )
If \alpha, \beta are the roots of the Quadratic equation 6x^2-6x+1 =0 then Find the value of
\dfrac{1}{2} (a+b\alpha +c\alpha^2+d\alpha^3) +\dfrac{1}{2} (a+b\beta+c\beta^2+d\beta^3)

Answers

Answered by rohithkrhoypuc1
33

Answer:

\underline{\purple{\ddot{\Mathsdude}}}

Answered by Rohith kumar maths dude

Here for the given equation ,

a+beta=1 and alphabeta=1/6

Lets enter to question: -

1/2(a++^2+^3)+1/2(a+b beta+c beta^2+cbeta^3)

=1/2(2a+b+c[alpha+beta^2-2 alpha beta+d[(alpha+beta)^3-3alpha beta(alpha+beta}}]

=1/2[2a+b+c(1-1/3)+d(1-1/2)]

From this we get that,

a+b/2+c/3+d/4.

Hope it helps u @lasyasolasya.

Answered by Anonymous
32

Given Expression,

 \sf \:  {6x}^{2}  - 6x + 1 = 0

Here,

  • Sum of Zeros = -(-6)/6 = 1
  • Product of Zeros = 1/6

Consider

\sf \: \dfrac{1}{2} (a+b\alpha +c\alpha^2+d\alpha^3) +\dfrac{1}{2} (a+b\beta+c\beta^2+d\beta^3) \\  \\  =   \sf \: \dfrac{a}{2}  +  \dfrac{a}{2}  +  \dfrac{ \alpha b}{2}  +  \dfrac{ \beta b}{2} +  \dfrac{ { \alpha }^{2} c}{2}  +  \dfrac{ { \beta }^{2}c }{2}  +  \dfrac{ { \alpha }^{3}d }{2} +   \dfrac{ { \beta }^{3}d }{2}  \\  \\  = \sf \: a +  \dfrac{b}{2} ( \alpha  +  \beta ) +  \dfrac{c}{2} ( { \alpha }^{2}  +  \beta  {}^{2} ) +  \dfrac{d}{2} ( { \alpha }^{3}  +  \beta  {}^{3} ) -  -  -  -  - (1)

We know that,

 \sf \: ( \alpha  +  \beta ) {}^{2}  =  { \alpha }^{2}  +  { \beta }^{2}  + 2 \alpha  \beta  \\  \\  \longrightarrow \sf \:  {1}^{2}  =  \alpha  {}^{2}  +  { \beta }^{2}  + 2 \times  \dfrac{1}{6}  \\  \\ \longrightarrow \sf \:  \alpha  {}^{2}  +  { \beta }^{2} = 1 -  \dfrac{1}{3}  \\  \\ \longrightarrow  \underline{ \boxed{\sf \:  \alpha  {}^{2}  +  { \beta }^{2} = \dfrac{2}{3} }}

Also,

 \sf \:  \alpha  {}^{3}  +  { \beta }^{3}  = ( \alpha  +  \beta ) {}^{3}  - 3 \alpha  \beta ( \alpha  +  \beta ) \\  \\  \longrightarrow \sf \:  \sf \:  \alpha  {}^{3}  +  { \beta }^{3}  = {1}^{3}    - 3 \times  \dfrac{1}{6}  \times 1 \\  \\ \longrightarrow \sf \:  \sf \:  \alpha  {}^{3}  +  { \beta }^{3}  =1 -  \dfrac{1}{2}  \\  \\ \longrightarrow \sf \underline{ \boxed{ \sf \:  \alpha  {}^{3}  +  { \beta }^{3}  = \dfrac{1}{2} }}

Substituting all the values in expression (1),

 \sf\dfrac{1}{2} (a+b\alpha +c\alpha^2+d\alpha^3) +\dfrac{1}{2} (a+b\beta+c\beta^2+d\beta^3) = a +  \dfrac{b}{2}  \times 1 +  \dfrac{c}{2}  \times  \dfrac{2}{3}   +   \dfrac{d}{2}  \times  \dfrac{1}{2}  \\  \\  \longrightarrow \boxed{ \boxed{ \sf \dfrac{1}{2} (a+b\alpha +c\alpha^2+d\alpha^3) +\dfrac{1}{2} (a+b\beta+c\beta^2+d\beta^3) = a + \frac{b}{2} +  \dfrac{c}{3}   +  \dfrac{d}{4} }}

Similar questions