Math, asked by beingdaring12, 3 months ago

\bf\huge{Question:} The area of a rhombus is equal to that of a triangle whose side and corresponding altitude are 24cm and 15cm respectively if one of the diagonals of the rhombus is 18cm . Find the other

Answers

Answered by shloksolanki
6

Answer:

Area of rhombus=area of triangle

(1/2)×d1×d2=(1/2)×base×altitude

(1/2)×22×d2=(1/2)×24.8×16.5

d2=24.8×16.5/22 cm.

d2=(124/5)×(33/2)×(1/22)

d2=(124×33×1)/(5×2×22)

d2=372/20=18.6 cm. , .

Answered by Anonymous
56

Given:-

  • The area of a rhombus is equal to that of a triangle side and corresponding altitude are 24cm and 15cm respectively.

  • one of the diagonals of the rhombus is 18cm

To Find : -

  • The other diagonal of the rhombus

Concept : -

➤ Here, we have been provided with the hieght and the base of the triangle and the measurement of a diagonal in the rhombus respectively. It is said that the area of the rhombus is equal to the area of the triangle. Now, let's find the area of the triangle which will further help us in finding the diagonal of the rhombus.

Solution : -

Now,

  • Let's find the area of the triangle

We know that,

 { \pink{\star}}{ \pink{ \underline{ \boxed{ \bf{Area_{(triangle)} =  \frac{1}{2}  \times base \times hieght}}}}}

Here,

  • Base ( B ) = 24cm
  • Hieght ( H ) = 15cm

Substituting we get,

{ : \implies} \rm \: Area _{(triangle)} =  \frac{1}{2}  \times b \times h  \:  \:  \:  \:  \: \\  \\  \\ { : \implies} \rm \: Area _{(triangle)} =  \frac{1}{ \cancel2}  \times  \cancel{24} \times 15 \\  \\  \\ { : \implies} \rm \: Area _{(triangle)} = 12 \times 15 \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\{ : \implies} \rm \: Area _{(triangle)}  = 180 {cm}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Henceforth area of the triangle is 180cm²

We know that,

➛Area of triangle is equal to the area of rhombus

  • Henceforth the area of the rhombus is 180cm²

Now,

  • Let's find its other diagonal

As we know that,

 { \pink{\star}}{ \pink{ \underline{ \boxed{ \bf{Area_{(rhombus)} =  \frac{1}{2}  \times  d_{1} \times \:  d_{2} }}}}}

Where,

  • Diagonal ( 1 ) = 18cm

  • Area = 180cm²

Substituting we get,

{ : \implies} \rm \: Area _{(rhombus)} =  \frac{1}{2}  \times d _{1}  \times d _{2} \\  \\  \\ { : \implies} \rm 180 =  \frac{1}{2}  \times 18 \times d _{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\ { : \implies} \rm \: d _{2}  =  \frac{180 \times  \cancel2}{ \cancel{18}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \rm \: d _{2}  =   \cancel\frac{180}{9}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  { : \implies} \rm \:  { \pink{ \underline{ \boxed{ \frak{d _{2}  =20cm}} \star}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Henceforth, the other diagonal is 20cm

More to know :-

{\sf{\bold{\leadsto Perimeter \: of \: rectangle \: = \:2(length+breadth)}}} \\  \\ {\sf{\bold{\leadsto Perimeter \: of \: square \: = \: 4 \times sides}}} \\  \\ {\sf{\bold{\leadsto Area \: of \: square \: = \: Side \times Side}}} \\  \\{\sf{\bold{\leadsto Area \: of \: triangle \: = \: \dfrac{1}{2} \times breadth \times height}}} \\  \\{\sf{\bold{\leadsto Area \: of \: paralloelogram \: = \: Breadth \times Height}}} \\  \\ \; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: circle \: = \: \pi r^{2}}}} \\  \\ \; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: triangle \: = \: (1st \: + \: 2nd \: + 3rd) \: side}}} \\ \\ {\sf{\bold{\leadsto Perimeter \: of \: paralloelogram \: = \: 2(a+b)}}} \\  \\{\sf{\bold{\leadsto CSA \: of \: sphere \: = \: 2 \pi r^{2}}}} \\  \\ {\sf{\bold{\leadsto SA \: of \: sphere \: = \: 4 \pi r^{2}}}} \\  \\ {\sf{\bold{\leadsto TSA \: of \: sphere \: = \: 3 \pi r^{2}}}} \\  \\ {\sf{\bold{\leadsto Diameter \: of \: circle \: = \: 2r}}} \\ \\ {\sf{\bold{\leadsto Radius \: of \: circle \: = \: \dfrac{d}{2}}}} \\  \\ {\sf{\bold{\leadsto Volume \: of \: sphere \: = \: \dfrac{4}{3} \pi r^{3}}}} \\  \\ {\sf{\bold{\leadsto Area \: of \: circle = \: \pi r^{2}}}} \\  \\ {\sf{\bold{\leadsto Circumference \: of \: circle \: = \: 2 \pi r}}} \\  \\{\sf{\bold{\leadsto Diameter \: of \: circle \: = \: 2r}}}


mddilshad11ab: Perfect¶
Similar questions