Math, asked by Anonymous, 3 months ago


{ \bf{ \huge{Question:}}}

★The diagonal of a rectangle is thrice it's smaller side.

➱Find the ratio of its sides

↝ Quality Answer needed ✅​

Answers

Answered by Anonymous
16

Given : The diagonal of a rectangle is thrice its small side.

Exigency to Find: The ratio of its side respectively.

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

❒ Now let the smaller side be x and the diagonal be 3x

{ \underline{ \bf{ \bigstar \: According \: to \: the \: question : }}}

In the following rectangle,

  • AB is the largest side and Bc is the smaller side.

We know,

  • BC × 3 = AB

Here,

  • BC = x
  • AC = 3x

In Triangle ABC , Using pythagoras therom we get,

 \dashrightarrow \tt \:  {h}^{2}  =  {s}^{2} +  {s}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \\ \dashrightarrow \tt( {ac)}^{2}  = ( {bc)}^{2}  + ( {ab)}^{2}  \:  \:  \:  \:  \\  \\  \\ \dashrightarrow \tt {(3x)}^{2}  =  {x}^{2}  +  {(ab)}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \\ \dashrightarrow \tt \: 9 {x}^{2}  =  {x}^{2}  +  {(ab)}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ \dashrightarrow \tt {8x}^{2}  =  {(ab)}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \\  \\  \\ \dashrightarrow \tt \:  \sqrt{8 {x}^{2} }  =  {(ab)}^{}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: \\  \\  \\ \dashrightarrow \tt \: 2 \sqrt{2x}  = ab \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Henceforth, the longer side = 22x

We know,

  • The smaller side = x

{ \large{ \rm{ratio : }}}

   \longmapsto \sf 2 \sqrt{2x}  : x \\  \\  \longmapsto \sf 2 \sqrt{2}  : 1 \:  \:

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

Thx for the question!

Answered by ItzMeMukku
14

\textbf{Answer:}

\text2√2 : 1

\textbf{Let's see the solution }

\boxed{\bf{Refer\: the\: attached\: figure}}

\sf\color{red}In\: rectangle\: ABCD

\sf\color{pink}AB\: is\: the\: longer\: side

\sf\color{green}BC\: is\: the\: smaller\: side

\sf\color{darkviolet}AC\: is\: the\: diagonal

ΔABC is the right angled triangle since all angles of rectangle is of 90°.

Let the smaller side BC be x

Diagonal = AC = \sf3 \times \text{Smaller Side}

\mapsto\bf{So, In ΔABC}

Hypotenuse^{2} = Perpendicular^2+ Base^2Hypotenuse

\sf AC^{2} = AB^2+ BC^2AC

\sf(3x)^{2} = AB^2+ x^2(3x)

\sf9x^{2} = AB^2+ x^29x

\sf8x^{2} = AB^28x

\sf\sqrt{8x^{2}} = AB

\sf2\sqrt{2}x= AB²

Thus the longer side is\sf 2\sqrt{2}x2

\sf{Smaller\: side = x}

\sf {Ratio\: of\: its\: Sides = Longer\: side : smaller \:side}

= 2√2x : x

= 2√2 : 1

\bold\pink{\fbox{\sf{Hence\: ratio\: of \:its \:sides\: \:is \:2√2 : 1 .}}}

Thankyou :)

Attachments:
Similar questions