Math, asked by Anonymous, 6 months ago

 \bf \huge {\underline {\underline \red{QuEsTiOn}}}

BE and CF are two equal altitudes of a triangle ABC. Prove that the triangle ABC is an isosceles.​

Answers

Answered by Anonymous
6

{\tt{\red{\underline{\underline{\huge{Answer:}}}}}}

In ΔBCF andΔCBE,

∠BFC=∠CEB (Each 90º)

Hyp. BC= Hyp. BC (Common Side)

Side FC= Side EB (Given)

∴ By R.H.S. criterion of congruence, we have

ΔBCF≅ΔCBE

∴∠FBC=∠ECB (CPCT)

∴AB=AC (Converse of isosceles triangle theorem)

∴ ΔABC is an isosceles triangle.

══════════XXX═════════════

\huge\boxed{\fcolorbox{black}{yellow}{HOPE\: IT \: HELPS}}

HOPE IT HELPS

\begin{gathered}\begin{gathered}\\\huge\underline{ \mathbb\blue{Please}\:\mathbb\green{Mark}\:\mathbb\orange{As}}\:\end{gathered}\end{gathered}

Please Mark As

\huge\underline{ \mathbb\red{Brilliant}\:\mathbb\purple{Answers}}

Brilliant Answers

PLEASE INBOX ME THEN BLOCK ME

Attachments:
Answered by Anonymous
73

 \huge \mathbb \green{question}

  • BE and CF are two equal altitudes of a triangle ABC. Prove that the triangle ABC is an isosceles.

 \huge  \mathbb\red {answer}

  • In ΔBCF andΔCBE, 
  • ∠BFC=∠CEB  (Each 90º)
  • Hyp. BC= Hyp. BC (Common Side)
  • Side FC= Side EB (Given)
  • ∴ By R.H.S. criterion of congruence, we have 
  • ΔBCF≅ΔCBE
  • ∴∠FBC=∠ECB (CPCT)
  • In ΔABC,
  • ∠ABC=∠ACB 
  • [∵∠FBC=∠ECB]
  • ∴AB=AC (Converse of isosceles triangle theorem)
  • ∴ ΔABC is an isosceles triangle.
  • Hope this helps u. Sister❣️
  • Mark as brain list✌️
Similar questions