Math, asked by MissStar, 11 months ago


 \bf \: if \: 4 + 2 =23  \\2 + 3 = 71 \\3 + 3 = 45 \\ \bf \: find :2 + 2 = ? \:  \\  \\ \bf logic \: please.. \: explain \: full..

Answers

Answered by RvChaudharY50
376

\begin{lgathered}\tt {\pink{Given}}\begin{cases}\green{4+2=23}\\ {\blue{2+3=71}}\\\orange{3+3=45}\\\red{2+2=?}\end{cases}\end{lgathered}\\\\\large\overbrace{\underbrace{\pink{\boxed{\bf{\red{A}\green{n}s\blue{w}\orange{e} r:}}}}}\\\\\underline\textbf{Let's See The Logic First:-} \\\purple\longmapsto\tt\:if\: a+b=cd\\\underline{\orange{\bf\:Than}}:-\\\boxed{\boxed{\red{\bf\:b^{a}\times2-(b^{a}-a^{b})=dc=Reverse=dc}}}

\rule{200}{4}

\bigstar\underline{{\mathbb{\red{LET'S}\:CHECK\:\green{NOW}}}}\bigstar\\\\ \red\longmapsto\:\rm\pink{4+2=23}\\\underline{\blue{\bf\:Logic}}:-\\={2}^{4} \times2-({2}^{4}-{4}^{2})\\=16 \times2-(16-16)\\=32 - 0 \\=32\\=\sf\:Reverse\\= \LARGE23 \\\\\bf\:Similarly,\\\\\red\longmapsto\:\rm\orange{2+3=71}\\\underline{\green{\bf\:Logic}}:-\\={3}^{2}\times2-({3}^{2}-{2}^{3})\\=9 \times2-(9-8)\\=18-1\\=17\\=\sf\:Reverse\\=\LARGE71\\\\\bf\:Similarly,\\\\\red\longmapsto\:\rm\purple{3+3=45}\\\underline{\green{\bf\:Logic}}:-\\={3}^{3}\times2-({3}^{3}-{3}^{3})\\=27 \times2-(27-27)\\=54-0\\=54\\=\sf\:Reverse\\=\LARGE45

\rule{200}{4}

\bf\red{♡♡}\underline{Hence}\red{♡♡}:-\\\red\leadsto2+2\\ \red\leadsto{2}^{2}\times2-( {2}^{2}-{2}^{2})\\\red\leadsto4\times2-0\\ \red\leadsto8-0\\\red\leadsto8\\ \red\leadsto08\\\red\leadsto\:  \large\red{\boxed{\tt\blue{R}e\purple{v} \red{e}\green{r}\orange{s}\pink{e}}}\\\red\leadsto\:\bold{\boxed{\large{\boxed{\orange{\small{\boxed{\large{\red{\bold{80}}}}}}}}}}=\large{\bf(\underline{\orange{Ans}}}.)\: \boxed {\boxed{\huge\bold{\red{\ddot{\smile}}}}}

\rule{200}{4}


Anonymous: Great
Answered by AdorableMe
382

________________________________________________

Given:-

4 + 2 = 23             ...(i)

2 + 3 = 71              ...(ii)

3 + 3 = 45             ...(iii)

To find:-

The value of 2 + 2.

Solution:-

In eq(i), (ii) and (iii), we see a logic used. that is:

p + q = rs

Then,

\boxed{q^p*2-(q^p-q^q)=sr=rs\ (by\ reversing\ the\ places\ of\ the\ digits)}

Apply the logic in eq.(i) :-

2^4*2-(2^4-4^2)\\=16*2-(16-16)\\=16*2-0\\=16*2\\=32\\On\ reversing,\\4+2=23

Similarly, apply the same logic in eq.(ii) :-

3^2*2-(3^2-2^3)\\=9*2-(9-8)\\=18-1\\=17\\On\ reversing,\\2+3=71

Applying the same logic in eq.(iii) :-

3^3*2-(3^3-3^3)\\=27*2-(27-27)\\=54-0\\=54\\On\ reversing,\\3+3=45

Now, apply the logic in 2 + 2.

2^2*2-(2^2-2^2)\\=4*2-(4-4)\\=8-0\\=8\\=08\\On\ reversing,\\\\2+2=80

So, from the above logic, we conclude that 2 + 2 = 80.

__________________________________________________


Anonymous: Awesome
Similar questions