Math, asked by Anonymous, 1 month ago

 \bf \: if \: a + \frac{1}{a} = 2 \: \: then \: \: find \: the \: \\ \bf \: value \: of \: \: {a}^{2004} + \frac{1}{ {a}^{2004} } Very urgent...​+ challenge

Answers

Answered by Anonymous
2

Answer :

 {a}^{2004}  +  \dfrac{1}{ {a}^{2004} }  = 2

Explanation :

We are given,

 \implies a +  \dfrac{1}{a}  = 2

 \implies   \dfrac{ {a}^{2} +  1}{a}  = 2

 \implies  {a}^{2} +  1  = 2a

 \implies  {a}^{2} - 2a +  1   = 0

Now the only solution of this equation is 1.

Hence the value of a is 1.

Now,

 \implies{a}^{2004}  +  \dfrac{1}{ {a}^{2004} }

Substitute a = 1

 \implies{1}^{2004}  +  \dfrac{1}{ {1}^{2004} }

 \implies \: 1 + 1

 \implies \: 2

Hence solved.

Answered by krishlochan
0

Step-by-step explanation:

We are given,

\implies a + \dfrac{1}{a} = 2⟹a+

a

1

=2

\implies \dfrac{ {a}^{2} + 1}{a} = 2⟹

a

a

2

+1

=2

\implies {a}^{2} + 1 = 2a⟹a

2

+1=2a

\implies {a}^{2} - 2a + 1 = 0⟹a

2

−2a+1=0

Now the only solution of this equation is 1.

Hence the value of a is 1.

Now,

\implies{a}^{2004} + \dfrac{1}{ {a}^{2004} }⟹a

2004

+

a

2004

1

Substitute a = 1

\implies{1}^{2004} + \dfrac{1}{ {1}^{2004} }⟹1

2004

+

1

2004

1

\implies \: 1 + 1⟹1+1

\implies \: 2⟹2

Hence solved.

Similar questions