Math, asked by BrainlyElon, 2 days ago

\bf \LARGE{Hola\ Guys!}

Solve \displaystyle \bf \int\ e^{\sqrt{x}}\ dx

\rm \Large{Thank\ you!}

Answers

Answered by TharunEEE
34

\displaystyle \sf \int e^{\sqrt{x}}\ dx

Let √x = t

⇒ x = t²

dx = 2t dt

\longrightarrow \displaystyle \sf \int e^t\ (2t\ dt)

\longrightarrow\ \displaystyle \sf 2 \int e^t\ t\ dt

Apply By Parts , (u=t & dv=eᵗdt)

⇒ du = dt & v = eᵗ

∫ udv = uv - ∫ vdu

\longrightarrow\ \displaystyle \sf 2 \left( te^t\ - \int e^t\ dt  \right)

\longrightarrow\ \displaystyle \sf 2 \left( te^t\ - e^t  \right)

\longrightarrow\ \displaystyle \sf 2e^t \left( t\ - 1  \right)

\longrightarrow\ \displaystyle  \pink{\boxed{\underline{ \sf2e^{\sqrt{x}} \left( \sqrt{x}\ - 1  \right) + c}}}

Answered by prasunsharma09
12

This is your answer thankyou

Attachments:
Similar questions