Math, asked by ItsRuchikahere, 1 month ago

 \bf \large \pink N \purple a\pink m\purple a\pink s \purple t \pink e


 \sf★ Find \: \frac{dy}{dx} \\ \sf \: if \: y = {sin \: x}^{(tan \: x)}

◇ Give stepwise answer​

Answers

Answered by SavageBlast
236

Answer:

Given:-

  • y = {sin \: x}^{(tan \: x)}

To Find:-

  • Value of   \dfrac{dy}{dx}

Solution:-

As given,

y = {sin \: x}^{(tan \: x)}

On taking log both side,

⟾ log y = tan x log sin x

Diff.w.r.to.x

\dfrac{1}{y}×\dfrac{dy}{dx}\: = \:tanx(\dfrac{d}{dx\:log sin\:x}) \:+\:log sin x(\dfrac{d}{dx\:tan\:x})

\dfrac{1}{y}×\dfrac{dy}{dx}\: =\: tanx \dfrac{1}{sinx}.\dfrac{d}{dxsin\: x}+log \:sin\:x sec^{2x}

\dfrac{1}{y}×\dfrac{dy}{dx}\:= \:tanx \dfrac{1}{sin\:x.cos\:x} + log\:sin\:x sec^{2x}

\dfrac{1}{y}×\dfrac{dy}{dx} =\dfrac{tanx.cosx}{sinx}+log\:sin\:x sec^{2x}

\dfrac{1}{y}×\dfrac{dy}{dx} =\dfrac{sinx}{cosx}.\dfrac{cosx}{sin\:x} +log\:sin\:x sec^{2x}

\dfrac{1}{y}×\dfrac{dy}{dx} = 1+log sinx sec^{2x}

\dfrac{dy}{dx} = y(1+log \:sin\:x sec^{2x})

\dfrac{dy}{dx} = sinx^{(tan\:x)}[1+log\:sin\:x sec^{2x}]

Hence, the Value of  {\bold{ \dfrac{dy}{dx}}} is

{\bold{sinx^{(tan\:x)}[1+log\:sin\:x sec^{2x}]}}.

━━━━━━━━━━━━━━━━━

Answered by Anonymous
48

Answer:

Step-by-step explanation:

</p><p> \red{ \begin{gathered}\sf  {x}^{y}{y}^{x} = {x+y}^{x+y} \\ \\ \sf Taking\:log\:on\:both\:sides \\ \\ \sf log {x}^{y}{y}^{x} = log {x+y}^{x+y} \\ \\ \sf log{x}^{y} + log{y}^{x} = (x+y)log(x+y) \\ \\ \sf ylogx + xlogy = (x+y)log(x+y) \\ \\ \sf Now\: differentiating\:w.r.t\: x \\ \\ \sf \frac{dy}{dx}logx + \frac{y}{x} + logy + \frac{x}{y} \frac{dy}{dx} = (1+\frac{dy}{dx})log(x+y) + \frac{x+y}{x+y}(1+\frac{dy}{dx}) \\ \\ \sf \frac{dy}{dx}logx + \frac{y}{x} + logy + \frac{x}{y} \frac{dy}{dx} = log(x+y) + \frac{dy}{dx}log(x+y) + 1+\frac{dy}{dx} \\ \\ \sf \frac{dy}{dx}logx+ \frac{x}{y} \frac{dy}{dx} - \frac{dy}{dx}log(x+y) - \frac{dy}{dx} = log(x+y) + 1 - logy - \frac{y}{x} \\ \\ \sf \frac{dy}{dx}(logx + \frac{x}{y} - log(x+y) - 1 ) = log(x+y) + 1 - logy - \frac{y}{x} \\ \\ \sf \frac{dy}{dx} = \frac{log(x+y) + 1 - logy - \frac{y}{x}}{logx + \frac{x}{y} - log(x+y) - 1 } \end{gathered}}</p><p>

Similar questions