Math, asked by ItsRuchikahere, 3 months ago


 \bf \large \pink {Namaste} \:  \blue{ Maths} \:  \purple{ Experts} \\
 \sf Find \:  \frac{dy}{dx}  \\
 \sf \: if \: y =  {sin \: x}^{(log \: x)}

Answers

Answered by singhamanpratap0249
50

Answer:

y =  { (\sin \: x )}^{ logx}  \\ taking \: log \: both \: side \: \\  log \: y =  log \: x( log \:  \sin \: x)

Differentiate \:  on \:  both \:  sides

 \frac{1}{y}  \times  \frac{dy}{dx}  =  \frac{ log \: x }{ \sin \: x \times  \cos \: x }  +  { log \: \sin \: x} \times  \frac{1}{x}

hence

 \frac{dy}{dx}  =  { \sin \: x }^{ log \: x( log \: x \:  \times  \cot \: x +  \frac{ log \: \sin \: x}{x}) }

Similar questions