Math, asked by BrainlyElon, 11 hours ago

\bf \orange{\dagger \quad Hola\ Guys\ !}
\bullet\ \quad \displaystyle \rm \int \dfrac{1}{x\sqrt{x^n-1}}\ dx

Answers

Answered by BrainlyIAS
49

Question :

\displaystyle \bullet\ \quad \sf \red{\int \dfrac{1}{x\sqrt{x^n-1}}\ dx}

Solution :

\displaystyle \sf \red{\int \dfrac{1}{x\sqrt{x^n-1}}\ dx}

\displaystyle \longrightarrow \quad \int \sf \dfrac{x^{n-1}}{x^n\ \sqrt{x^n-1}}\ dx

Lets use substitution method , where

\sf u = \sqrt{x^n-1}

\sf u^2 = x^n-1

\sf u^2+1=x^n

\sf 2u\ du = nx^{n-1}\ dx

\sf \dfrac{2u}{n}\ du=x^{n-1}\ dx

\displaystyle \longrightarrow \quad \int \sf \dfrac{\frac{2u}{n}}{(u^2+1)\ u}\ du

\displaystyle \longrightarrow \quad \sf \dfrac{2}{n}\ \int  \dfrac{1}{u^2+1}\ du

\displaystyle \longrightarrow \quad \sf \dfrac{2}{n}\ tan^{-1}(u)+c

  • \sf u = \sqrt{x^n-1}

\displaystyle \longrightarrow \quad \sf \pink{ \dfrac{2}{n}\ tan^{-1} \left( \sqrt{x^n-1} \right) +c}

Answered by ItzNobita50
209

Question!

\bullet\ \quad \displaystyle \rm \int \dfrac{1}{x\sqrt{x^n-1}}\ dx

Solution!

  • Answer refer to the attachment

Attachments:
Similar questions