Math, asked by BrainlyElon, 9 days ago

\bf{\orange{Hola\ Guys\ !}}
\blue{\sf Integral\ Challenge\ !}
\displaystyle \dagger\ \; \rm \green{\int \dfrac{1}{sin^6x}\ dx}
\mathbf{ . \qquad \pink{Thank\ you\ !} \qquad . }

Answers

Answered by BrainlyIAS
89

Question :

   \displaystyle \sf \quad \red{\int \dfrac{1}{sin^6x}\ dx}

Solution :

    \displaystyle \sf \int \dfrac{1}{sin^6x}\ dx

\longrightarrow \quad \displaystyle \sf \int \left(\dfrac{1}{sin^2x}\right)^2 \dfrac{1}{sin^2x}\ dx

Let's use substitution method , where

\rm \implies \blue{u = cot\ x}

\rm \implies u = \dfrac{cos\ x}{sin\ x}

\rm \implies du = \dfrac{sin\ x(-sin\ x)-cosx(cos\ x)}{sin^2x}\ dx

\rm \implies du = \dfrac{-sin^2x-cos^2x}{sin^2x}\ dx

\rm \implies \orange{-du = \dfrac{1}{sin^2x}\ dx}

and also ,

\rm \implies \blue{u = cot\ x}

\rm \implies u = \dfrac{cos\ x}{sin\ x}

\rm \implies u^2 = \dfrac{cos^2 x}{sin^2 x}

\rm \implies u^2 = \dfrac{1-sin^2x}{sin^2 x}

\rm \implies u^2 = \dfrac{1}{sin^2 x}-1

\rm \implies \orange{u^2 +1= \dfrac{1}{sin^2 x}}

Sub. in our main integral , we will get ,

\longrightarrow \quad \displaystyle \sf \int \left(u^2+1\right)^2 (-du)

\longrightarrow \quad \displaystyle \sf - \int u^4+2u^2+1\ du

\longrightarrow \quad \displaystyle \sf - \left[ \dfrac{u^5}{5} + \dfrac{2u^3}{3} + u \right]+ c

\bullet \sf \quad \purple{u=cot\ x}

\longrightarrow \quad \displaystyle \sf \pink{- \left[ \dfrac{cot^5x}{5} + \dfrac{2cot^3x}{3} + cot\ x \right]+ c}


amansharma264: Excellent
BrainlyIAS: Thank you ! ❣️
Answered by singhsuryanshu341
55

Step-by-step explanation:

solution :

  • please check the attached file
Attachments:
Similar questions