Answers
Answer:
Explanation:
Now,
Also,
Putting these values we get,
HOPE IT HELPS!!
PLEASE MARK IT AS BRAINLIEST ANSWER !!!
Answer:
Answer:
-\frac{1}{5} cot^{5}( x)-\frac{2}{3} cot^3x-cot(x)+C−51cot5(x)−32cot3x−cot(x)+C
Explanation:
\int\limits {\frac{1}{sin^{6}x } } \, dx∫sin6x1dx =-\int\limits ({\frac{1}{sin^{2}x } } )^2.\frac{-1}{sin^{2}x } \, dx=−∫(sin2x1)2.sin2x−1dx
Now,
u=cot(x)u=cot(x)
du=\frac{-1}{sin^{2}(x) }dxdu=sin2(x)−1dx
Also,
u=cot(x)u=cot(x)
u=\frac{cos(x)}{sin(x)}u=sin(x)cos(x)
\begin{gathered}u^{2} =\frac{cos^2x }{sin^{2}x}\\\\u^{2} =\frac{1-sin^{2}x}{sin^{2}x} \\\\u^{2} =\frac{1}{sin^{2}x}-1\\\\u^2+1=\frac{1}{sin^{2}x}\end{gathered}u2=sin2xcos2xu2=sin2x1−sin2xu2=sin2x1−1u2+1=sin2x1
Putting these values we get,
= > -\int\limits( {u^2+1})^2 \, du=>−∫(u2+1)2du
= > -\int\limits {(u^2+2u^2+1)} \, du=>−∫(u2+2u2+1)du
= > -[\frac{u^5}{5} +\frac{2u^3}{3} +u]=>−[5u5+32u3+u]
= > -\frac{1}{5} cot^{5}( x)-\frac{2}{3} cot^3x-cot(x)+C=>−51cot5(x)−32cot3x−cot(x)+C
HOPE IT HELPS!!
PLEASE MARK IT AS BRAINLIEST ANSWER !!!