Business Studies, asked by ΙΙïƚȥΑαɾყαɳΙΙ, 12 hours ago

\bf{\orange{Hola\ Guys\ !}} \blue{\sf Integral\ Challenge\ !} \displaystyle \dagger\ \; \rm \green{\int \dfrac{1}{sin^6x}\ dx}

Answers

Answered by AdiSTo
3

Answer:

-\frac{1}{5} cot^{5}( x)-\frac{2}{3} cot^3x-cot(x)+C

Explanation:

\int\limits {\frac{1}{sin^{6}x } } \, dx  =-\int\limits ({\frac{1}{sin^{2}x } } )^2.\frac{-1}{sin^{2}x } \, dx

Now,

u=cot(x)

du=\frac{-1}{sin^{2}(x) }dx

Also,

u=cot(x)

u=\frac{cos(x)}{sin(x)}

u^{2} =\frac{cos^2x }{sin^{2}x}\\\\u^{2} =\frac{1-sin^{2}x}{sin^{2}x} \\\\u^{2} =\frac{1}{sin^{2}x}-1\\\\u^2+1=\frac{1}{sin^{2}x}

Putting these values we get,

=> -\int\limits( {u^2+1})^2 \, du

=> -\int\limits {(u^2+2u^2+1)} \, du

=> -[\frac{u^5}{5} +\frac{2u^3}{3} +u]

=> -\frac{1}{5} cot^{5}( x)-\frac{2}{3} cot^3x-cot(x)+C

HOPE IT HELPS!!

PLEASE MARK IT AS BRAINLIEST ANSWER !!!

Answered by Anonymous
0

Answer:

Answer:

-\frac{1}{5} cot^{5}( x)-\frac{2}{3} cot^3x-cot(x)+C−51cot5(x)−32cot3x−cot(x)+C

Explanation:

\int\limits {\frac{1}{sin^{6}x } } \, dx∫sin6x1dx  =-\int\limits ({\frac{1}{sin^{2}x } } )^2.\frac{-1}{sin^{2}x } \, dx=−∫(sin2x1)2.sin2x−1dx

Now,

u=cot(x)u=cot(x)

du=\frac{-1}{sin^{2}(x) }dxdu=sin2(x)−1dx

Also,

u=cot(x)u=cot(x)

u=\frac{cos(x)}{sin(x)}u=sin(x)cos(x)

\begin{gathered}u^{2} =\frac{cos^2x }{sin^{2}x}\\\\u^{2} =\frac{1-sin^{2}x}{sin^{2}x} \\\\u^{2} =\frac{1}{sin^{2}x}-1\\\\u^2+1=\frac{1}{sin^{2}x}\end{gathered}u2=sin2xcos2xu2=sin2x1−sin2xu2=sin2x1−1u2+1=sin2x1

Putting these values we get,

= > -\int\limits( {u^2+1})^2 \, du=>−∫(u2+1)2du

= > -\int\limits {(u^2+2u^2+1)} \, du=>−∫(u2+2u2+1)du

= > -[\frac{u^5}{5} +\frac{2u^3}{3} +u]=>−[5u5+32u3+u]

= > -\frac{1}{5} cot^{5}( x)-\frac{2}{3} cot^3x-cot(x)+C=>−51cot5(x)−32cot3x−cot(x)+C

HOPE IT HELPS!!

PLEASE MARK IT AS BRAINLIEST ANSWER !!!

Similar questions