Math, asked by CutexSugar, 20 days ago


\bf{ \pink{Prove  \:  \: that:}}

\displaystyle{\sf\:\dfrac{\cos\:A}{1\:-\:\tan\:A}\:+\:\dfrac{\sin^2\:A}{\sin\:A\:-\:\cos\:A}\:=\:\sin\:A\:+\:\cos\:A} \  \textless \ br /\  \textgreater \

don't spam ✖
(with Step by step Explanation)​

Answers

Answered by mathdude500
16

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: \dfrac{cosA}{1 - tanA}  + \dfrac{ {sin}^{2} A}{sinA - cosA}  \\

We know,

\boxed{\sf{  \:tanA =  \frac{sinA}{cosA}  \: }} \\

So, on substituting, we get

\rm \:  =  \: \dfrac{cosA}{1 -  \dfrac{sinA}{cosA} }  + \dfrac{ {sin}^{2}A}{sinA - cosA} \\

\rm \:  =  \: \dfrac{cosA}{\dfrac{cosA - sinA}{cosA} }  + \dfrac{ {sin}^{2}A}{sinA - cosA} \\

\rm \:  =  \: \dfrac{cos^{2} A}{cosA - sinA}  + \dfrac{ {sin}^{2}A}{sinA - cosA} \\

\rm \:  =  \: \dfrac{cos^{2} A}{cosA - sinA} - \dfrac{ {sin}^{2}A}{cosA - sinA} \\

\rm \:  =  \: \dfrac{cos^{2} A -  {sin}^{2}A}{cosA - sinA}  \\

We know,

\boxed{\sf{  \: {x}^{2} -  {y}^{2} = (x + y)(x - y) \: }} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{(cosA - sinA)(cosA + sinA)}{cosA - sinA}  \\

\rm \:  =  \: cosA + sinA \\

Hence,

\rm \: \dfrac{cosA}{1 - tanA}  + \dfrac{ {sin}^{2} A}{sinA - cosA} = cosA + sinA  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by maheshtalpada412
17

Step-by-step explanation:

We have,

 \pink{\begin{aligned} \text { LHS } & \tt=\frac{\cos A }{1-\tan A }+\frac{\sin ^{2} A }{\sin A -\cos A } \\  \\ & \tt=\frac{\cos A }{1-\frac{\sin A }{\cos A }+\frac{\sin ^{2} A }{\sin A -\cos A }} \\ \\  & \tt=\frac{\cos A }{\frac{\cos A -\sin A }{\cos A }+\frac{\sin ^{2} A }{\sin A -\cos A }} \\ \\  & \tt=\frac{\cos ^{2} A }{\cos A -\sin A }+\frac{\sin ^{2} A }{\sin A -\cos A } \\  \\ & \tt=\frac{\cos ^{2} A }{\cos A -\sin A }-\frac{\sin ^{2} A }{\cos A -\sin A } \\  \\ & \tt=\frac{\cos ^{2} A -\sin ^{2} A }{\cos A -\sin A } \\  \\ & \tt=\frac{(\cos A +\sin A )(\cos A -\sin A )}{\cos A -\sin A } \\ & =\cos A +\sin A =  \text{RHS} \end{aligned} }

Similar questions