Math, asked by ritaarjun335, 2 days ago


 \bf \pmb{if \: a + b + c =  \frac{\pi}{2} }  \\  \bf \pmb{then \: find \:  \sin(2a) +  \sin(2b)  +  \sin(2c)  }
solve above question on trigonometry​

Answers

Answered by ajr111
32

Answer:

4cosa.cosb.cosc

Step-by-step explanation:

Given :

\mathrm{a + b + c =\dfrac{\pi}{2}}

To find :

sin(2a) + sin(2b) + sin(2c)

Solution :

=> sin(2a) + sin(2b) + sin(2c)

We know that,

\boxed{\mathrm{sinC + sinD = 2sin\bigg(\dfrac{C+D}{2}\bigg)cos\bigg(\dfrac{C-D}{2}\bigg)}}

here, C = 2a and D =2b

So, applying for 1st 2 terms,

\implies \mathrm{2sin\bigg(\dfrac{2a + 2b}{2}\bigg)cos\bigg(\dfrac{2a-2b}{2}\bigg) + sin2c}

\implies \mathrm{2sin(a+b)cos(a-b)+sin2c}

From given,

\mathrm{a + b + c =\dfrac{\pi}{2}}

So,

\mathrm{a + b  =\dfrac{\pi}{2} -c}

Substituting in place of a + b, we get

\implies \mathrm{2sin\bigg(\dfrac{\pi}{2}-c\bigg)cos(a-b)+sin2c}

We know that,

\boxed{\mathrm{sin\bigg(\dfrac{\pi}{2}-x\bigg) = cosx}}

So,

\implies \mathrm{2cosc\; cos(a-b)+sin2c}

We know that,

\boxed{\mathrm{sin2x = 2sinx\,cox}}

\implies \mathrm{2cosc\; cos(a-b)+2sinc\,cosc}

Taking 2cosc common,

\implies \mathrm{2cosc(cos(a-b)+sinc)}

From given,

\mathrm{a + b + c =\dfrac{\pi}{2}}

So,

\mathrm{c =\dfrac{\pi}{2} -(a+b)}

\implies \mathrm{2cosc(cos(a-b)+sin\bigg(\dfrac{\pi}{2} - (a+b)\bigg)}

We know that,

\boxed{\mathrm{sin\bigg(\dfrac{\pi}{2}-x\bigg) = cosx}}

\implies \mathrm{2cosc(cos(a-b)+cos(a+b))}

We know that,

\boxed{\mathrm{cosC + cosD = 2cos\bigg(\dfrac{C+D}{2}\bigg)cos\bigg(\dfrac{C-D}{2}\bigg)}}

So,

\implies \mathrm{2cosc\;2cos\bigg(\dfrac{a+b+a-b}{2}\bigg) cos\bigg(\dfrac{a-b-a-b}{2}\bigg)}

\implies \mathrm{4 cosa\; cosb\; cosc}

\therefore \overline{\underline{\boxed{\begin{array}{cc}\textbf{if a+b+c = $\dfrac{\pi}{\bf 2}$}\\\textbf{then}\\\mathbf{sin2a+sin2b+sin2c = 4cosa\,cosb\,cosc}\end{array}}}}

Extra information

Transformation formulae :

\boxed{\begin{array}{cc} \boxed{\mathrm{sinC + sinD = 2sin\bigg(\dfrac{C+D}{2}\bigg)cos\bigg(\dfrac{C-D}{2}\bigg)}}\\\\\boxed{\mathrm{sinC - sinD = 2cos\bigg(\dfrac{C+D}{2}\bigg)sin\bigg(\dfrac{C-D}{2}\bigg)}}\\\\\boxed{\mathrm{cosC + cosD = 2cos\bigg(\dfrac{C+D}{2}\bigg)cos\bigg(\dfrac{C-D}{2}\bigg)}}\\\\\boxed{\mathrm{cosC - cosD = -2sin\bigg(\dfrac{C+D}{2}\bigg)sin\bigg(\dfrac{C-D}{2}\bigg)}}\end{array}}

Hope it helps!

Similar questions