Physics, asked by BrainlyHope, 1 day ago

\bf{Question}
A stone is thrown vertically upward with an initial velocity of 40 m/s. Taking g= 10 m/s, find the maximum height reached by the stone. What is the net displacement and the total distance covered by the stone?

Note-Well defined answer needed!!​

Answers

Answered by oOItzStylishQueenOo
2

The maximum height is 80 m and the total distance covered by the stone is 160 m and the displacement is zero.

Explanation:

Given that,

Final velocity v = 0

Initial velocity u = 40m/s

We know that,

Using equation of motion

v^2=u^2+2ghv

2

=u

2

+2gh

0-40^2= 2\times 10\times h0−40

2

=2×10×h

The maximum height is

h = 80\ mh=80 m

The stone will reach at the top and will come down

Therefore, the total distance will be

s = h_{1}+h_{2}s=h

1

+h

2

s = 80\ m+80\ m = 160 ms=80 m+80 m=160m

The net displacement is

D = h_{1}-h_{2}D=h

1

−h

2

D = 80\ m-80\ m= 0D=80 m−80 m=0

Hence, The maximum height is 80 m and the total distance covered by the stone is 160 m and the displacement is zero.

Answered by Anonymous
12

Answer:

Given :-

  • A stone is thrown vertically upward with an initial velocity of 40 m/s.
  • Acceleration due to gravity (g) = 10 m/s.

To Find :-

  • What is the maximum height reached by the stone.
  • What is the net displacement.
  • What is the total distance covered by the stone.

Formula Used :-

\clubsuit Third Equation Of Motion Formula :

\longrightarrow \sf\boxed{\bold{\pink{v^2 =\: u^2 + 2as}}}

where,

  • v = Final Velocity
  • u = Initial Velocity
  • a = Acceleration
  • s = Distance Covered

Solution :-

Maximum height reached by the stone :-

Given :

  • Initial Velocity = 40 m/s
  • Acceleration due to gravity = - 10 m/s [As the object is thrown vertically upwards]
  • Final Velocity = 0 m/s

According to the question by using the formula we get,

\implies \sf (0)^2 =\: (40)^2 + 2(- 10) \times s

\implies \sf (0 \times 0) =\: (40 \times 40) + (- 20) \times s

\implies \sf 0 =\: 1600 - 20 \times s

\implies \sf 0 - 1600 =\: - 20s

\implies \sf {\cancel{-}} 1600 =\: {\cancel{-}} 20s

\implies \sf 1600 =\: 20s

\implies \sf \dfrac{1600}{20} =\: s

\implies \sf 80 =\: s

\implies \sf\bold{\red{s =\: 80\: m}}

\therefore The maximum height reached by the stone is 80 m .

________________

Net Displacement :-

\leadsto Now, when we throw stone upwards its reaches highest point and come down.

So, the initial point and final point is same.

Hence, the total displacement is zero.

\therefore Net Displacement = 0

________________

Total Distance Covered by the stone :-

\footnotesize \dashrightarrow \bf Total\: Distance\: Covered =\: 2 \times Maximum\: Height\: Covered\: by\: stone\\

\dashrightarrow \sf Total\: Distance\: Covered =\: 2 \times 80\\

\dashrightarrow \sf\bold{\red{Total\: Distance\:  Covered =\: 160\: m}}\\

\therefore The total distance covered by the stone is 160 m .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions