Math, asked by Anonymous, 6 hours ago

 \bf{QueStioNS : }

1. Find the volume and total surface area of a right circular solid cylinder whose radius and height are 14 cm and 20 cm, respectively.

2. In the attachment!!!

Attachments:

Answers

Answered by mathdude500
15

\large\underline{\sf{Solution-}}

Given that,

  • Radius of cylinder, r = 14 cm

  • Height of cylinder, h = 20 cm

We know,

Volume of cylinder of radius r and height h is given by

 \purple{\rm :\longmapsto\:\boxed{\tt{ Volume_{(Cylinder)} = \pi \:  {r}^{2} \: h \: }}}

So, on substituting the values, we get

\rm :\longmapsto\:Volume_{(Cylinder)} = \dfrac{22}{7} \times 14 \times 14  \times 20

\rm :\longmapsto\:Volume_{(Cylinder)} = 22 \times 2 \times 14  \times 20

 \\ \purple{\rm\implies \boxed{\tt{ \:Volume_{(Cylinder)} = 12320 \:  {cm}^{3}}}} \\

Now,

We know Total Surface Area (TSA) of cylinder of radius r and height h is given by

 \red{\rm :\longmapsto\:\boxed{\tt{  \: TSA_{(Cylinder)} \:  =  \: 2\pi \: r(h + r) \: }}}

So, on substituting the values, we get

\rm :\longmapsto\:TSA_{(Cylinder)} = 2 \times \dfrac{22}{7}  \times 14 \times (14 + 20)

\rm :\longmapsto\:TSA_{(Cylinder)} = 2 \times 22 \times 2 \times 34

 \red{\rm\implies \:\boxed{\tt{ TSA_{(Cylinder)} = 2992 \:  {cm}^{2} \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More information :-

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Similar questions