Math, asked by Anonymous, 1 month ago


\bf \: solve \: \: this \:   \\  \\ \sf \:if \: (a + b + c) = abc \\ \\ \bf \: find : \frac{(1 - a^{2})(1 - b^{2})}{ab} + \frac{(1 - b... ^{2})(1 - c^{2})}{bc} + \frac{(1 - c^{2})(1 - a^{2})}{ca}. \\ \\

Answers

Answered by user0888
16

\large{\text{\underline{Short note:-}}}

For this question to be defined, we need abc\neq 0.

\large{\text{\underline{Solution:-}}}

From transposition, we get the following equation.

\hookrightarrow abc-a-b-c=0

And now,

\hookrightarrow \dfrac{abc-a-b-c}{a}=0

\hookrightarrow \dfrac{abc-a-b-c}{b}=0

\hookrightarrow \dfrac{abc-a-b-c}{c}=0

Which shows,

\hookrightarrow bc-1-\dfrac{b}{a}-\dfrac{c}{a}=0

\hookrightarrow ca-\dfrac{a}{b}-1-\dfrac{c}{b}=0

\hookrightarrow ab-\dfrac{a}{c}-\dfrac{b}{c}-1=0

Adding all and by transposition,

\hookrightarrow ab+bc+ca-(\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{c})=3

The three individual terms of the given expression are,

\dfrac{(1-a^{2})(1-b^{2})}{ab} =(\dfrac{1}{a}-a)(\dfrac{1}{b}-b)=ab-\dfrac{a}{b}-\dfrac{b}{a}+\dfrac{1}{bc}

\dfrac{(1-b^{2})(1-c^{2})}{bc} =(\dfrac{1}{b}-b)(\dfrac{1}{c}-c)=bc-\dfrac{b}{c}-\dfrac{c}{b}+\dfrac{1}{bc}

\dfrac{(1-c^{2})(1-a^{2})}{ca} =(\dfrac{1}{c}-c)(\dfrac{1}{a}-a)=ca-\dfrac{c}{a}-\dfrac{a}{c}+\dfrac{1}{ca}

Lastly,

\hookrightarrow \text{(Given expression)}=ab+bc+ca-(\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{c})+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}

\hookrightarrow \text{(Given expression)}=3+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}

\hookrightarrow \text{(Given expression)}=3+\dfrac{a+b+c}{abc}

\hookrightarrow \text{(Given expression)}=4

This is indeed a cool question! The answer to the question is 4. This is the end of the required answer.

\large{\text{\underline{Exercise to the readers:-}}}

This is an example of adding all the equations.

Find the value of 17x+9y+4z, if \begin{cases} &8x+3y+z=4 \\  &3x+y+z=3 \end{cases}.

\large{\text{\underline{Exercise solution:-}}}

We cannot solve the equations, and it is the point of the question. It is two system equations in three variables, which lack the information.

Multiply both of the equations by \alpha,\beta respectively.

\hookrightarrow \begin{cases} &8\alpha x+3\alpha y+\alpha z=4\alpha \\  &3\beta x+\beta y+\beta z=3\beta \end{cases}

Adding both equations,

\hookrightarrow (8\alpha+3\beta)x+(3\alpha+\beta)y+(\alpha+\beta)z=4\alpha+3\beta

Comparing the coefficients,

\hookrightarrow \begin{cases} & 8\alpha+3\beta= 17\\  & 3\alpha+\beta= 9\\  & \alpha+\beta= 4\end{cases}\implies \alpha=1,\beta=3

Hence,

\hookrightarrow (8x+3y+z)+3(3x+y+z)=4+9=13

13 is the required answer for this part.

Thank you.

Similar questions