Math, asked by llMichFabulousll, 5 days ago


\bf\texttt{{answer \:  the  \:  above \:  }}
\bf\texttt{{ Question : }}

Attachments:

Answers

Answered by ExElegant
6

\: \: \: \: \: \: \: \: \: \: \: \: \:  \rm{\green{60\degree}}

━━━━━━━━━━━━━━━━━━━━━━━━━━

Given :-

In the above adjoining figure -

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \rm{\pink{AB \: \parallel \: CD}}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \rm{\pink{AB \: \parallel \: EF}}

━━━━━━━━━━━━━━━━━━━━━━━━━━

To determine :-

\: \: \: \: \: \rm{Compute \: \: the \: \: value \: \: of \: \: x \: \: ?}

━━━━━━━━━━━━━━━━━━━━━━━━━━

Solution :-

in the above attachment

line AB is parallel to CD and EF .

and

\: \: \: \: \: \: \: \: \: \: \: \: \: \rm{\angle CEF \: \: = \: \: 150\degree \: \: \: -(1)}

\: \: \: \: \: \: \: \: \: \: \: \: \: \rm{\angle BCE \: \: = \: \: 30\degree \: \: \: \: \: -(2)}

we know that -

The sum of two\: \: \rm{\purple{adjacent \: \: angles}} which are on either side of the same line is \rm{\purple{180\degree}}.

So -

 \: \: \: \rm{\angle CEF \: + \: \angle ECD \: \: = \: \: 180\degree}

from eqⁿ(1) -

 \: \: \: \: \: \: \: \rm{150\degree \: + \: \angle ECD \: \: = \: \: 180\degree}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \rm{\angle ECD \: \: = \: \: 180\degree - 150\degree}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \rm{\angle ECD \: \: = \: \: 30\degree \: \: -(3)}

now -

we also know that -

\: \: \: \: \: \rm{\pink{alternate \: \: angles \: \: are \: \: always \: \: equal.}}

so -

from observing the parallel lines (AB and CD) -

 \: \: \: \: \: \: \: \: \: \: \rm{\angle ABC \: \: = \: \: \angle BCD \: \: \: \: -(4)}

since ,

 \: \: \: \: \: \: \: \: \: \: \rm{\angle BCD \: \: = \: \: \angle BCE + \angle ECD}

from eqⁿ(2) and eqⁿ(3) -

\: \: \: \: \: \: \: \: \: \: \rm{\angle BCD \: \: = \: \: 30\degree + 30\degree}

\: \: \: \: \: \: \: \: \: \: \rm{\angle BCD \: \: = \: \: \: \: 60\degree \: \: \: \: -(5)}

Now -

from eqⁿ(4) and eqⁿ(5) -

\: \: \: \: \: \: \: \: \: \: \rm{\angle ABC \: \: = \: \: 60\degree}

So -

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \rm{\boxed{\purple{\: x \: \: = \: \: 60\degree \: }}}

━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by CyberBeast
3

Answer:

hello listen aagar insta , pin use karte hoge toh mere question me id de dena

Step-by-step explanation:

A partner is an individual who jointly with other people (partners) agrees to set up a business firm and provide goods and services through it. Partners of a partnership firm can be of different types, such as an active partner, secret partner, minor partner, nominal partner, or sleeping partner.

Similar questions