Physics, asked by TheUnknownLily, 5 months ago

 \bf{The\:mass\:of\:the\:earth\:is\:6\:×\:10^{24}\:kg \\ and\:that\:of\:the\:moon\:is \\ 7.4\:×\:10^{22}\:kg\:.\:If\:the\:distance \\ between\:the\:earth\:and\:the\:moon \\ is\:3.84\:10^{5}\:km\:, \\ calculate\: the\:force\:exerted \\ by\:the\:earth\:on\:Moon \\ \\ G\:=\:6.7\:×\:10^{-11}\:Nm²\:kg²

Answers

Answered by gurmanpreet1023
2

\huge{\boxed{\mathfrak\purple{answer}}}

Here is the answer---

Given Conditions ⇒

Mass of the Earth(m₁) = 6 × 10²⁴ kg.

Mass of the Moon(m₂) = 7.4 × 10²² kg.

Distance between the Earth and the Moon(d) = 3.84 × 10⁵ km.

= 3.84 × 10⁸ m.

Gravitational Constant(G) = 6.7 × 10⁻¹¹ Nm²/kg².

Using the Newton's law of Gravitation,

F = G × m₁× m₂ × /d².

F is the Force of Gravitation between the Earth and the Moon.

Substituting the Given Values in the Formula,

∴ F = (6.7 × 10⁻¹¹ × 6 × 10²⁴ × 7.4 × 10²²) ÷ (3.84 × 10⁸)²

⇒ F = (6.7 × 6 × 7.4 × 10¹⁹) ÷ (14.7456)

⇒ F = 20.1741 × 10¹⁹ N.

⇒ F ≈ 20.2 × 10¹⁹ N.

Thus, the Gravitational Force of Attraction between the Earth and the Sun is 20.2 × 10¹⁹ N.

Answered by shivajikaithi
1

Answer:

pls unblock me my Brain is not working unblock

.·´¯`(>▂<)´¯`·.

Similar questions