Math, asked by ItzFadedGuy, 1 month ago

\bf{Topic: \: Arithmetic\: Progression}

The first term of the A.P. is 5, the last term is 45 and the sum of all its terms is 400. Find the number of terms and the common difference of the A.P.

\bigstar Kindly don't spam or post irrelevent answers. If you do so, I will report your answer.

\bigstar Thanks for helping me!​

Answers

Answered by BrainlyBeast
12

Answer:

Given :

first term of A.P = 5

the last term , l = 45

Sum of all its term ,S = 400

To Find :

Number of terms

common difference

Solution:

{ \boxed{s =  \frac{n}{2} (a + l)}}

 \implies \: 400 =  \frac{n}{2} (5 + 45) \\  \implies 400 \times 2 = n(50) \\  \implies \: 800 = 50n \\  \implies \: n \:  =  \frac{800}{50}  = 16

_____________________

an = a + (n -1 )d

 \implies \: 45 = 5 + (16 -1 )d \\  \implies \: 45 - 5 = 15d \\  \implies \: 40 = 15d  \\  \implies \: d =  \frac{40}{15}  =  \frac{8}{3}  = 2.6

So,the number of terms :

 \green{ \boxed{n = 16}}

Common difference:

 \orange{ \boxed{d \:  =  \frac{8}{3} }}

Answered by Anonymous
193

Answer:

{\large{\sf{\pmb{\underline{\red{Given:-}}}}}}

  • ● The first term of the A.P. is 5.
  • ● The last term is the A.P. is 45.
  • ● The sum of all its terms is 400.

\large\sf{\pmb{\underline{\red{To \: Find:-}}}}

  • ● The number of terms
  • ● The common difference of the A.P.

\large\sf{\pmb{\underline{\red{Using \:  Formula :-}}}}

 \dag{\underline{\boxed{\sf{S_n=  {\dfrac{n}{2}\big(a + l \big)}}}}}

Where

  • \rm{S_n} = sum of all terms
  • ● n = number of terms
  • ● a = first term
  • ● l = last term

\rule{200}2

{\dag{\underline{\boxed{\sf{l=a \big(n - 1 \big)d}}}}}

Where

  • ● l = Last term
  • ● n = number of term
  • ● d = common difference

\large\sf{\pmb{\underline{\red{Solution :-}}}}

{\underline{\pmb{\frak{Finding \: the \: number \: of \: term}}}}

 : \implies{\sf{S_n= \bf{\dfrac{n}{2}\big(a + l \big)}}}

  • ● Substituting the values

 : \implies{\sf{400= \bf{\dfrac{n}{2}\big(5 + 45 \big)}}}

 : \implies{\sf{400= \bf{\dfrac{n}{2}\big(50 \big)}}}

 : \implies{\sf{400= \bf{\dfrac{n}{2} \times 50 }}}

 : \implies{\sf{400= \bf{\dfrac{50n}{2}}}}

 : \implies{\sf{400 \times 2= \bf{50n}}}

 : \implies{\sf{800= \bf{50n}}}

 : \implies{\sf{\dfrac{800}{50} = \bf{n}}}

: \implies{\sf{\cancel{\dfrac{800}{50}} = \bf{n}}}

: \implies{\sf{n} = \bf{16}}

{\dag{\underline{\boxed{\sf{\pink{\pmb{n = 16}}}}}}}

  • Henceforth,The Number of term is 16.

\rule{200}2

{\underline{\pmb{\frak{Finding \: the \:common  \: difference  \: of \:  A.P.}}}}

{: \implies{\sf{l= \bf{a  + \big(n - 1 \big)d}}}}

  • ● Substituting the values

{: \implies{\sf{45= \bf{5 +  \big(16 - 1 \big)d}}}}

{: \implies{\sf{45 - 5= \bf{15d}}}}

{: \implies{\sf{40= \bf{15d}}}}

{: \implies{\sf{\dfrac{40}{15} = \bf{d}}}}

{: \implies{\sf{\cancel{\dfrac{40}{15}} = \bf{d}}}}

{: \implies{\sf{d} =\bf{\dfrac{8}{3} }}}

{\dag{\underline{\boxed{\sf{\pink{\pmb{d =\dfrac{8}{3} }}}}}}}

  • Henceforth,The common difference of the A.P is 8/3.

\large\sf{\pmb{\underline{\red{Know \:  More  :-}}}}

★ Formula to find the numbers of term of an AP:

  : \implies \sf{n= \bigg[ \dfrac{(l - a)}{d}  \bigg]}

★ Formula to find the tsum of first n terms of an AP:

  :  \implies\sf{S_n= \dfrac{n}{2} (a + l)}

★ Formula to find the sum of squares of first n natural numbers of an AP:

 :  \implies \sf{S =  \dfrac{n(n + 1)(2n + 1)}{6} }

★ Formula to find the nth term of an AP is the square of the number of terms:

  : \implies \sf{S =  {n}^{2} }

★ Formula to find the sum of of an AP:

  : \implies \sf{S = n(n+1)}

Similar questions