Math, asked by Anonymous, 12 hours ago

  \bf \: Verify  \: the \:  Rolle’s \:  Theorem \:  for \:  functions \:  on \:  the \:  indicated  \: intervals: \\  \sf \implies f(x) = cos  \: 2x \:  in \: the \: interval \:  [0, \pi]

Don't spam!​

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given function,

\rm :\longmapsto\:f(x) = cos2x \:  \:  \: in \: [0, \: \pi]

Step :- 1 Continuity

We know, cosine function is always continuous for every real number.

\rm\implies \:\:f(x) = cos2x \: is \: continuous \: on \: [0, \: \pi]

Step :- 2 Differentiability

\rm :\longmapsto\:f(x) = cos2x

So,

\rm :\longmapsto\:f'(x) =  - sin2x

Hence,

\rm\implies \:\:f(x) = cos2x \: is \: differentiable \: on \: (0, \: \pi)

Step :- 3

\rm :\longmapsto\:f(0) = cos0 = 1

and

\rm :\longmapsto\:f(\pi) = cos2\pi = 1

So,

\rm\implies \:f(0) = f(\pi)

So, it means, Rolle's Theorem is applicable.

It implies, there exist atleast one real number c ∈ (0, π)

such that

\rm :\longmapsto\:f'(c) = 0

\rm :\longmapsto\: - sin2c = 0

\rm :\longmapsto\: sin2c = 0

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{ sinx = 0  \: \rm\implies \: \sf x = n\pi  \: \forall \: n \in \: Z}}} \\

So, using this identity, we get

\rm :\longmapsto\: 2c =\: n\pi \: \forall \: n \in \: Z

\rm :\longmapsto\: c =\:\dfrac{n\pi}{2}  \: \forall \: n \in \: Z

\rm\implies \:c = \dfrac{\pi}{2}\:  \:  \in \: (0, \: \pi)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Definition of Rolle's Theorem

Let f(x) be a real valued function defined on [a, b] such that

(i) f(x) is continuous on [a, b]

(ii) f(x) is differentiable on (a, b)

(iii) f(a) = f(b)

then, there exist atleast one real number c x∈ (a, b) such that f'(c) = 0.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More about T - Formula

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Answered by XxitzZBrainlyStarxX
8

[Refer to the above attachment]

Hope you have satisfied.

Attachments:
Similar questions