Math, asked by Anonymous, 1 month ago


 \bf \: x  = 2 + \sqrt{2 +  \sqrt{2 +  \sqrt{2 +  \sqrt{2 +  \sqrt{2} } } } } ...
Find out x ​

Answers

Answered by Anonymous
11

{\maltese \; \; {\underline{\purple{\underline{\pmb{\bf{Given : }}}}}}}

\qquad \qquad {\bigstar\; {\underline{\boxed{\tt{ x = 2+ \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 .... \infty} } } }   }}}}}

{\maltese \; \; {\underline{\purple{\underline{\pmb{\bf{To \;  Find : }}}}}}}

  • The value of the variable which is denoted with the sign x

{\maltese \; \; {\underline{\purple{\underline{\pmb{\bf{ Required \; Solution: }}}}}}}

  • The value of x should be four to satisfy the condition

{\maltese \; \; {\underline{\purple{\underline{\pmb{\bf{Full \; Solution : }}}}}}}

➤ Here we observe that x - 2 equals to \bf \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 ... \infty} }} } so , we can rewrite the equation as such that ,

\longrightarrow \sf x - 2 =  \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 ...\infty} } } } \\ \\ \\ \longrightarrow \sf x - 2 = \sqrt{2 + x - 2} \\ \\ \\ \longrightarrow \sf x - 2 = \sqrt{x} \\ \\ \\ \qquad \qquad {\purple{\underline{\mathbb{ SQUARING \; ON \; BOTH \; SIDES }}}} \\ \\

\longrightarrow \sf x^2 - 4x + 4 = x \\ \\ \\ \longrightarrow \sf  x^2 - 5x + 4 = 0 \\ \\ \\ \qquad  {\purple{\underline{\mathbb{ FACTORISING \; THE \; EQUATION}}}} \\ \\

\longrightarrow \sf x^{2} - 5x + 4 = 0 \\ \\ \\ \longrightarrow \sf x^{2} - 4x - 1x + 4 = 0 \\ \\ \\ \longrightarrow \sf x( x - 4 ) - 1 ( x - 4 ) = 0 \\ \\ \\ \longrightarrow \sf ( x - 1 ) ( x - 4 ) \\ \\ \\ \qquad \qquad {\purple{\underline{\mathbb{ FINDING \; THE \; ROOTS}}}} \\ \\

\longrightarrow \sf x - 1 = 0 \\ \\  \longrightarrow {\red{\boxed{\frak{ x = 1}}}} \\ \\ \\ \longrightarrow \sf x - 4 = 0 \\ \\ \longrightarrow {\red{\boxed{\frak{ x = 4}}}}

{\maltese \; \; {\underline{\purple{\underline{\pmb{\bf{Since \; we \; observe: }}}}}}}

  • That it is give that x equals to 2 + root of 2 and so on so the value of x will be in thee terms more than that of the term 2 and as we've figured out that the roots are 1 , 4 so the value of x will be 4 as 4 > 2 whereas 1 < 2

{\maltese \; \; {\underline{\purple{\underline{\pmb{\bf{Therfore : }}}}}}}

  • The value of x in the equation is 4

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by ApexSpyer
3

Step-by-step explanation:

Ohm's Law is a formula used to calculate the relationship between voltage, current and resistance in an electrical circuit. To students of electronics, Ohm's Law (E = IR) is as fundamentally important as Einstein's Relativity equation (E = mc²) is to physicists. E = I x R.

Similar questions