Math, asked by Anonymous, 3 days ago


\bigstar \: \bf \pink{Question :-}
Evaluate the Following :-

⟼ 14 sin 30° + 6 cos 60° - 5 tan 45°


Answers

Answered by TheAestheticBoy
27

Question :-

Evaluate the Following :-

  •  \sf{14 \: sin \: 30 \degree + 6 \: cos \:  60\degree - 5 \: tan \: 45\degree} \\

⠀⠀⠀⠀⠀⠀⠀

Answer :-

 \dag \:  \:  \sf{\sf{14 \: sin \: 30 \degree + 6 \: cos \:  60\degree - 5 \: tan \: 45\degree}} \\

 \Longrightarrow \:  \:  \sf{14 \times  \frac{1}{2} \:   \: + \:   \: 6 \times  \frac{1}{2} \:   \:  - \:  \:  5 \times 1 } \\

 \Longrightarrow \:  \:  \sf{7 \times  \frac{1}{1} \:  \:  + \:  \:  3 \times  \frac{1}{1}  \:  \: -  \:  \: 5 \times 1  } \\

 \Longrightarrow \:  \:  \sf{7 \:  +  \: 3 \:  -  \: 5} \\

 \Longrightarrow \:  \:  \sf{5}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Learn More :-

➻ The Angles by which Trigonometric Functions can be represented are called as Trigonometry Angles . The important Angles of Trigonometry are 0° , 30° , 45° , 60° , 90° . These are the Standard Angles of Trigonometric Ratios, such as sin , cos , tan , sec , cosec , and cot .

By applying values from 0 to 9 in these Trigonometric Ratios , we get the following values listed in the Trigonometry Value table .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

 \begin{gathered}  \underline{ \red{\dag \:  \: \sf  {\pmb{Trigonometric\: Table}} \:  \:  \dag}}\\  \\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \sf \pmb{\angle A} & \sf \pmb{0}^{ \circ} & \sf \pmb{30}^{ \circ} & \sf \pmb{45}^{ \circ} & \sf \pmb{60}^{ \circ} & \sf \pmb{90}^{ \circ} \\ \\ \rm \sf{ sin  \: A} & \sf0 & \sf \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } &  \sf\dfrac{ \sqrt{3}}{2} &\sf1 \\ \\ \rm \sf{ cos \: A} &\sf 1 & \sf\dfrac{ \sqrt{3} }{2}&\sf \dfrac{1}{ \sqrt{2} } & \sf\dfrac{1}{2} &\sf0 \\ \\ \rm  \sf{tan \:  A} & \sf0 & \sf\dfrac{1}{ \sqrt{3} }&\sf1 & \sf\sqrt{3} &\rm \sf\infty \\ \\ \rm \sf{ cosec \:  A} & \rm \sf\infty & \sf2&\sf \sqrt{2} &\sf \dfrac{2}{ \sqrt{3} } &\sf1 \\ \\ \rm  \sf{sec \:  A} & \sf1 & \sf\dfrac{2}{ \sqrt{3} }& \sf\sqrt{2} & \sf2 & \rm\sf \infty \\ \\ \rm  \sf{cot \: A} & \rm \sf\infty & \sf\sqrt{3} & \sf1 & \sf\dfrac{1}{ \sqrt{3} } &\sf 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}

Answered by Teluguwala
35

Qᴜᴇsᴛɪᴏɴ :

Evaluate the Following :-

 \red⇝  \: \bf 14  \: sin \:  30° \:  +  \: 6 \:  cos  \: 60° \:  -  \: 5  \: tan \:  45°

Sᴏʟᴜᴛɪᴏɴ :

We know that,

  • sin 30° =  \:  \displaystyle \bf \:  \frac{1}{2}
  • cos 60° =  \:  \displaystyle \bf \:  \frac{1}{2}
  • tan 45° =  \:  \displaystyle \bf \: 1

According to the question by using these values we get,

 \red⇢  \:   \: \bf 14  \: sin \:  30° \:  +  \: 6 \:  cos  \: 60° \:  -  \: 5  \: tan \:  45°

  \sf\red ⇢  \:  \:  14  \: sin \:  30° \:  +  \: 6 \:  cos  \: 60° \:  -  \: 5  \: tan \:  45°

 \displaystyle  \sf\red ⇢ \:   \:  14   \bigg( \frac{1}{2}  \bigg) \:  +  \: 6 \bigg( \frac{1}{2}  \bigg)\:  -  \: 5  \bigg(1 \bigg)

 \displaystyle  \sf\red ⇢ \:   \:  14   \times  \frac{1}{2} \:  +  \: 6  \times \frac{1}{2} \:  -  \: 5   \times 1

 \displaystyle  \sf\red ⇢   \:  \:   \cancel\frac{14}{2} \:  +  \:  \cancel\frac{6}{2} \:  -  \:  \cancel \frac{5}{1}

 \displaystyle  \sf\red ⇢  \:  \:  \frac{7}{1}  \:  +  \:  \frac{3}{1}  \:  -  \:  \frac{5}{1}

\displaystyle  \sf\red ⇢  \:  \:  7\:  +  \:  3\:  -  \: 5

\displaystyle  \sf\red ⇢  \:  \:  10\:  -  \: 5

\displaystyle  \bf\red{ ⇢  \:  \:  5}

 \:

TGᴇᴛ Mᴏʀᴇ Iɴғᴏʀᴍᴀᴛɪᴏɴ :

  • See the above attachment

 \:

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Attachments:
Similar questions
Math, 8 months ago