Math, asked by gohilbhavisha09, 5 months ago


 \binom{lim}{x -  {1}^{ + } }  \times \frac{ \sqrt{ {x}^{3}  + 1} \:  \:  +  \sqrt{ {x}^{5} + 1 }  }{ \sqrt{x + 1} }


Answers

Answered by MotiwalaAbdulrehman
0

Answer:

tex] \binom{lim}{x - {1}^{ + } } \times \frac{ \sqrt{ {x}^{3} + 1} \: \: + \sqrt{ {x}^{5} + 1 } }{ \sqrt{x + 1} } [/tex]

Step-by-step explanation:

tex] \binom{lim}{x - {1}^{ + } } \times \frac{ \sqrt{ {x}^{3} + 1} \: \: + \sqrt{ {x}^{5} + tex] \binom{lim}{x - {1}^{ + } } \times \frac{ \sqrt{ {x}^{3} + 1} \: \: + \sqrt{ {x}^{5} + 1 } }{ \sqrt{x + 1} } [/tex] } }{ \sqrt{x + 1} } [/tex]

Similar questions