Math, asked by pradhanmadhumita2021, 1 month ago


 \blue{ \displaystyle \sf\int_{0}^{2} \int_{x }^{ {x}^{2} } x \cdot {y}^{2} - xdydx}

Answers

Answered by saichavan
13

\displaystyle \sf\int_{0}^{2} \int_{x }^{ {x}^{2} } x \cdot {y}^{2} - xdydx

Consider,

\displaystyle \sf \int_{x }^{ {x}^{2} } x \cdot {y}^{2} - x \: dy

 \implies \displaystyle \sf \int \: x {y}^{2}  - x \: dy

 \implies \displaystyle \sf \int \: x {y}^{2}  \: dy \:  -  \int \: x \: dy

 \sf \dfrac{x {y}^{3} }{3} - xy

Return limits.

 \bigg(  \sf\dfrac{x {y}^{3} }{x}  - xy \bigg) \bigg|^{ {x}^{2} } _{x}

\displaystyle \sf \:  \frac{x \times  {( {x}^{2} )}^{3} }{3}  - x \times  {x}^{2}  -  \bigg( \frac{x \times  {x}^{3} }{3}  - x \times x \bigg)

 \green{ \boxed{\displaystyle \sf \int_{x }^{ {x}^{2} } x \cdot {y}^{2} - x \: dy =  \frac{ {x}^{7} -  {x}^{4}  }{3} -  {x}^{3}   +  {x}^{2}  -  -  - (1) }}

 \displaystyle  \sf\therefore \int_{0}^{ 2} \bigg( \frac{ {x}^{7}  -  {x}^{4} }{3}  -  {x}^{3}  +  {x}^{2}  \bigg) \: dx \:  -  -  - ( from \: (1))

 \implies \displaystyle \sf \int \:  \frac{ {x}^{7} -  {x}^{4}  }{3}  -  {x}^{3}  +  {x}^{2}  \: dx

 \displaystyle \sf \int  \frac{ {x}^{7}  -  {x}^{4} }{3}dx - \int \:  {x}^{3} \:  dx  + \int {x}^{2} dx

 \implies \displaystyle \sf  \frac{ {x}^{8} }{24}   -  \frac{ {x}^{5} }{15}  -  \frac{ {x}^{4} }{4}  +  \frac{ {x}^{3} }{3}

 \displaystyle \sf \bigg( \frac{ {x}^{8} }{24}  -  \frac{ {x}^{5} }{15}  -  \frac{ {x}^{4} }{4}  +  \frac{ {x}^{3} }{3}  \bigg) \bigg|^{2}_{0}

 \implies \displaystyle \sf  \frac{ {2}^{8} }{24}  -  \frac{ {2}^{5} }{15}  -  \frac{ {2}^{4} }{4}  +  \frac{ {2}^{3} }{3}  -  \bigg(0 \bigg)

 \implies \displaystyle \sf \:  \frac{256}{24}  -  \frac{32}{15}  - 4 +  \frac{8}{3}

 \implies \displaystyle  \sf \:  \frac{36}{5}

 \green{ \boxed{ \displaystyle \sf\int_{0}^{2} \int_{x }^{ {x}^{2} } x \cdot {y}^{2} - xdydx \:  =  \frac{36}{5} }}

Additional Information -

\begin{gathered}\boxed{\begin{array}{c|c}\bf f(x)&\bf\displaystyle\int\rm f(x)\:dx\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \rm k&\rm kx+C\\ \\ \rm sin(x)&\rm-cos(x)+C\\ \\ \rm cos(x)&\rm sin(x)+C\\ \\ \rm{sec}^{2}(x)&\rm tan(x)+C\\ \\ \rm{cosec}^{2}(x)&\rm-cot(x)+C\\ \\ \rm sec(x)\ tan(x)&\rm sec(x)+C\\ \\ \rm cosec(x)\ cot(x)&\rm-cosec(x)+C\\ \\ \rm tan(x)&\rm log(sec(x))+C\\ \\ \rm\dfrac{1}{x}&\rm log(x)+C\\ \\ \rm{e}^{x}&\rm{e}^{x}+C\\ \\ \rm x^{n},n\neq-1&\rm\dfrac{x^{n+1}}{n+1}+C\end{array}}\end{gathered}

Some Properties -

  \displaystyle \rm\int \: f(x)  \pm \: g(x) \: dx =  \int \: f(x) \: dx \pm \int \: g(x) \: dx

  \displaystyle \rm \int \: a \: dx = a \times x

Answered by MuskanJoshi14
1

Step-by-step explanation:

\displaystyle \sf\int_{0}^{2} \int_{x }^{ {x}^{2} } x \cdot {y}^{2} - xdydx

Consider,

\displaystyle \sf \int_{x }^{ {x}^{2} } x \cdot {y}^{2} - x \: dy

 \implies \displaystyle \sf \int \: x {y}^{2}  - x \: dy

 \implies \displaystyle \sf \int \: x {y}^{2}  \: dy \:  -  \int \: x \: dy

 \sf \dfrac{x {y}^{3} }{3} - xy

Return limits.

 \bigg(  \sf\dfrac{x {y}^{3} }{x}  - xy \bigg) \bigg|^{ {x}^{2} } _{x}

\displaystyle \sf \:  \frac{x \times  {( {x}^{2} )}^{3} }{3}  - x \times  {x}^{2}  -  \bigg( \frac{x \times  {x}^{3} }{3}  - x \times x \bigg)

 \green{ \boxed{\displaystyle \sf \int_{x }^{ {x}^{2} } x \cdot {y}^{2} - x \: dy =  \frac{ {x}^{7} -  {x}^{4}  }{3} -  {x}^{3}   +  {x}^{2}  -  -  - (1) }}

 \displaystyle  \sf\therefore \int_{0}^{ 2} \bigg( \frac{ {x}^{7}  -  {x}^{4} }{3}  -  {x}^{3}  +  {x}^{2}  \bigg) \: dx \:  -  -  - ( from \: (1))

 \implies \displaystyle \sf \int \:  \frac{ {x}^{7} -  {x}^{4}  }{3}  -  {x}^{3}  +  {x}^{2}  \: dx

 \displaystyle \sf \int  \frac{ {x}^{7}  -  {x}^{4} }{3}dx - \int \:  {x}^{3} \:  dx  + \int {x}^{2} dx

 \implies \displaystyle \sf  \frac{ {x}^{8} }{24}   -  \frac{ {x}^{5} }{15}  -  \frac{ {x}^{4} }{4}  +  \frac{ {x}^{3} }{3}

 \displaystyle \sf \bigg( \frac{ {x}^{8} }{24}  -  \frac{ {x}^{5} }{15}  -  \frac{ {x}^{4} }{4}  +  \frac{ {x}^{3} }{3}  \bigg) \bigg|^{2}_{0}

 \implies \displaystyle \sf  \frac{ {2}^{8} }{24}  -  \frac{ {2}^{5} }{15}  -  \frac{ {2}^{4} }{4}  +  \frac{ {2}^{3} }{3}  -  \bigg(0 \bigg)

 \implies \displaystyle \sf \:  \frac{256}{24}  -  \frac{32}{15}  - 4 +  \frac{8}{3}

 \implies \displaystyle  \sf \:  \frac{36}{5}

 \green{ \boxed{ \displaystyle \sf\int_{0}^{2} \int_{x }^{ {x}^{2} } x \cdot {y}^{2} - xdydx \:  =  \frac{36}{5} }}

Additional Information -

\begin{gathered}\boxed{\begin{array}{c|c}\bf f(x)&\bf\displaystyle\int\rm f(x)\:dx\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \rm k&\rm kx+C\\ \\ \rm sin(x)&\rm-cos(x)+C\\ \\ \rm cos(x)&\rm sin(x)+C\\ \\ \rm{sec}^{2}(x)&\rm tan(x)+C\\ \\ \rm{cosec}^{2}(x)&\rm-cot(x)+C\\ \\ \rm sec(x)\ tan(x)&\rm sec(x)+C\\ \\ \rm cosec(x)\ cot(x)&\rm-cosec(x)+C\\ \\ \rm tan(x)&\rm log(sec(x))+C\\ \\ \rm\dfrac{1}{x}&\rm log(x)+C\\ \\ \rm{e}^{x}&\rm{e}^{x}+C\\ \\ \rm x^{n},n\neq-1&\rm\dfrac{x^{n+1}}{n+1}+C\end{array}}\end{gathered}

Some Properties -

  \displaystyle \rm\int \: f(x)  \pm \: g(x) \: dx =  \int \: f(x) \: dx \pm \int \: g(x) \: dx

  \displaystyle \rm \int \: a \: dx = a \times x

Similar questions