Math, asked by Anonymous, 7 days ago

\blue{ \Large{\boxed{ \tt{ \red{Question:- }}}}}
Justify whether it is true to say that the following are the nth terms of an AP.
\tt{(1) \:2n -3}
\tt{(2)\:{3n}^{2}+5}
\tt{(3)\:1+n+{n}^{2}}

\small\underline\purple{\underline{\sf{\maltese\: Required\::-}}}
\red\rightarrow\tt\green\{Uncopied\: Solutions}
\red\rightarrow\tt\blue{full\: explanation}


Answers

Answered by itsPapaKaHelicopter
26

Answer:

\text{(i) \: Yes, Here }  a_{n} = 2n - 3

 \textbf{So, Put}  \: n = 1 \: a_{1} = 2(1) - 3 =  - 1

 \textbf{Put}  \: n = 2 \: a_{2} = 2(2) - 3 = 1

 \textbf{Put}  \: n = 3 \: a_{3} = 2(3) - 3 = 3

 \textbf{Put}  \: n = 4 \: a_{4} = 2(4) - 3 = 5

\sf \colorbox{god} {List of numbers becomes \:  - 1 ,1 ,3 ,..}

Here,

⇒a_{2} - a_{1} = 1 - ( - 1) = 1 + 1 = 2

⇒a_{3} - a_{2} = 3 - 1 = 2

⇒a_{4} - a_{3} = 5 - 3 = 2

★ \textbf{So, it terms an AP }

Hence,

2n - 3\sf \colorbox{god} {is the nth term of an AP }

\text{ (ii) No. Here, \: } a_{n} =  {3n}^{2}  + 5

 \textbf{Put}  \: n = 1,a_{1} = 3 {(1)}^{2}  + 5 = 8

 \textbf{Put}  \: n = 2 \: a_{2} = 3 {(2)}^{2}  + 5 = 3(4) + 5 = 17

 \textbf{Put}  \: n = 3  ,a_{3} = 3 {(3)}^{2}  + 5 = 3(9) + 5 = 27 + 5 = 32

‣List of the becomes number becomes 8, 17, 32.

Here,

⇒a_{2} - a_{1} = 17 - 8 = 9

⇒a_{3} - a_{2} = 32 - 17 = 15

∴a_{2} - a_{1}≠a_{3} - a_{2}

Since,

The Successive difference of the list is not constant

★\sf \colorbox{god} {So it does not form an AP}

\text{ (iii) No. Here, \: } a_{n} = 1 + n +  {n}^{2}

 \textbf{put \: } n = 1 \: a_{1} = 1 + 1 +  {(1)}^{2}  = 3

 \textbf{put \: }n = 2 ,a_{2} = 1 + 2 +  {(2)}^{2}  = 1 + 2 + 4 = 7

 \textbf{put \: }n =3  ,a_{3} = 1 + 3 +  {(3)}^{2}  = 1 + 3 + 9 = 13

\text{List of number becomes 3,7,13}

Here,

⇒a_{2} - a_{1} = 7 - 3 = 4

⇒a_{3} - a_{2} = 13 - 7 = 6

∴a_{2} - a_{1}≠a_{3} - a_{2}

Since,

The Successive difference of the list is not constant

★\sf \colorbox{god} {So it does not form an AP}

 \\  \\  \\  \\ \sf \colorbox{lightgreen} {\red★ANSWER ᵇʸɴᴀᴡᴀʙ}

Answered by rekhasn1988
4

Answer:

hope it will help you

Step-by-step explanation:

plz give more than 50 thanks

Attachments:
Similar questions