Math, asked by jiyasinha15092007, 4 months ago


{\blue{\large{\overbrace{\underbrace{\dag \: {\pink {\bigstar} \: {\green{Question }}\: {\pink{ \bigstar} \: \dag}}}}}}}


prove that the diagonals of rhombus bisect each other at right angles


\huge{\green{\underline{\underline{\tt{❌Don't Span❌}}}}}

Answers

Answered by Nirnay488
4

\huge\underline\mathcal\orange{ᴀɴꜱᴡᴇʀ}

Let ABCD is a rhombus.

⇒ AB=BC=CD=DA [ Adjacent sides are eqaul in rhombus ]

In △AOD and △COD

⇒ OA=OC [ Diagonals of rhombus bisect each other ]

⇒ OD=OD [ Common side ]

⇒ AD=CD

∴ △AOD≅△COD [ By SSS congruence rule ]

⇒ ∠AOD=∠COD [ CPCT ]

⇒ ∠AOD+∠COD=180

o

[ Linear pair ]

⇒ 2∠AOD=180

o

.

∴ ∠AOD=90

o

.

Hence, the diagonals of a rhombus bisect each other at right angle.

Answered by hareem23
3

 \huge \color{lime}ANSWER :

Let ABCD is a rhombus.

⇒ AB=BC=CD=DA [ Adjacent sides are eqaul in rhombus ]

In △AOD and △COD

⇒ OA=OC [ Diagonals of rhombus bisect each other ]

⇒ OD=OD [ Common side ]

⇒ AD=CD

∴ △AOD≅△COD [ By SSS congruence rule ]

⇒ ∠AOD=∠COD [ CPCT ]

⇒ ∠AOD+∠COD=180

o

[ Linear pair ]

⇒ 2∠AOD=180

o

.

∴ ∠AOD=90

o

.

Hence, the diagonals of a rhombus bisect each other at right angle.

Similar questions