Math, asked by sia1234567, 5 hours ago


 \bold{\bigstar \: dont \: spam}  \\  \bold{\bigstar \:explaination \: required}
Using mathematical induction prove that :
 \bold{\frac{d}{dx} ( {x}^{n} ) =  {nx}^{n - 1} \: for \: all \: n \in \: N}
______________________
   \red{\star \: \sf{chapter - derivation}}
 \red{\star \: \sf{standard - 11 \: th}}

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

 \rm :\longmapsto\:Let \: P(n) : \bold{\dfrac{d}{dx} ( {x}^{n} ) = {nx}^{n - 1} \: for \: all \: n \in \: N}

Step :- 1 For n = 1

\rm :\longmapsto\:\bold{\dfrac{d}{dx} ( {x}^{1} ) = {x}^{1 - 1} \:}

\rm :\longmapsto\:1 =  {x}^{0}

\rm :\longmapsto\:1 =  1

\bf\implies \:P(n) \: is \: true \: for \: n \:  =  \: 1

Step :- 2 Let assume that P(n) is true for n = k

 \rm :\longmapsto\: \bold{\dfrac{d}{dx} ( {x}^{k} ) = {kx}^{k - 1} \: for \: all \: k \in \: N -  -  - (1)}

Step :- 3 Prove that P(n) is true for n = k + 1

 \rm :\longmapsto \: P(k + 1) : \bold{\dfrac{d}{dx} ( {x}^{k + 1} ) = {(k + 1)x}^{k} \: for \: all \: k \in \: N}

Consider,

 \rm :\longmapsto \: \bold{\dfrac{d}{dx} ( {x}^{k + 1} ) }

 \:  \:   \rm \:  =  \:   \:\: \bold{\dfrac{d}{dx} ( {x}^{k} .x) }

 \:  \:   \rm \:  =  \:   \:\: \bold{x\dfrac{d}{dx} ( {x}^{k}) +  {x}^{k}\dfrac{d}{dx} \: (x)  }

 \:  \:   \rm \:  =  \:   \: \bf \: x \: (k {x}^{k - 1}) +  {x}^{k} \times 1 \:  \:  \:  \:  \{ \: using \: (1) \:  \}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{  \bigg\{ \sf \:  \because \: \dfrac{d}{dx}x = 1 \:  \bigg \}}

 \:  \:   \rm \:  =  \:   \: \bf \: k {x}^{k}  +  {x}^{k}

 \:  \:   \rm \:  =  \:   \: \bf \:  {x}^{k}(k + 1)

\bf\implies \:P(n) \: is \: true \: for \: n \:  =  \: k + 1

Hence,

By the process of Principal of Mathematical Induction,

 \rm :\longmapsto\: \bold{\dfrac{d}{dx} ( {x}^{n} ) = {nx}^{n - 1} \: for \: all \: n \in \: N}

Answered by AbhinavRocks10
2

WE have to prove :⟹  \bf{\frac{d}{dx}x^n=nx^{n-1}}

for n = 1

  • \bf{LHS =\frac{d}{dx}(x)=1}

(x)=1

RHS = 1.x^{1-1} = 1

So, LHS = RHS

∴ P(1) is true.

  • P(n) is true for n = 1

Let P(k) be true for some positive integer k.

Now, to prove that P(k + 1) is also true

⟹ RHS = \bf{(k+1)x^{k+1-1}}(k+1)x

\tt LHS = \bf{\frac{d}{dx}(x^{k+1})=\frac{d}{dx}(x\times x^k)}

=\bf{x^k\frac{d}{dx}(x)+x\frac{d}{dx}(x^k)}x

=\bf{x^k.1+x.kx^{k-1}}x

=\bf{x^{k+1-1}+kx^{k+1-1}}x

=\bf{(k+1)x^{k+1-1}}(k+1)

  • ∴ LHS = RHS

Thus, P(k + 1) is true whenever P(k) is true.

Thus, P(k + 1) is true whenever P(k) is true.Therefore, by the principle of mathematical induction, the statement P(n) is true for every positive integer n.

\text{\underline{Hence proved}}

Similar questions