Math, asked by Anonymous, 1 month ago


 \bold {Find  \: n  \: if  \: ^{n - 1} P_{3} :  {}^{n} P_{4} =   1 :9}


PLEASE ANSWER MY QUESTION​

Answers

Answered by sajan6491
14

 \bold{ \frac{^{n - 1} P_{3} }{{}^{n} P_{4}  } =  \frac{1}{9} }

  \bold{\implies \:  \frac{(n - 1)(n - 2)(n - 3)}{n(n - 1)(n - 2)(n - 4)}  =  \frac{1}{9}}

  \bold{\implies \:  \frac{1}{n}  =  \frac{1}{9}}

Cross multiplying n=9

Answered by diwanamrmznu
6

given★

  •  \bold {Find \: n \: if \: ^{n - 1} P_{3} : {}^{n} P_{4} = 1 :9}

find ★

  • n value

EVALUTION★

  • we know that

  •  {}^{n } p_{r}   =  \frac{n!}{(n - r)!}  \\

  •  =  >   \frac{ \frac{(n - 1)!}{(n - 1 - 3)!} }{ \frac{n!}{(n - 4)!} }  =  \frac{1}{9}  \\  \\  \\ =  >   \frac{ \frac{(n - 1)!}{(n - 4)!} }{ \frac{n!}{(n - 4)!} }    =  \frac{1}{9}  \\  \\  \\  =  >  \frac{(n - 1)!}{n(n - 1)!}  =  \frac{1}{9}  \\  \\  \\  =  >  \frac{1}{n}  =  \frac{1}{9} \\  \\  \\  =  > n = 9
  • permutation formula

__________________________

I hope it helps you

Similar questions