Math, asked by NewBornTigerYT, 8 months ago

{\bold{\huge{\green{Hey\:Mate}}}}

Solve above Question

\huge{\fbox{\fbox{\orange{\mathfrak{Explanation\:Required}}}}}

#Only for mathematics genius​

Attachments:

Answers

Answered by Anonymous
20

AnswEr :

Given System of Equations,

 \sf \:  {4}^{ \frac{x}{y}  +  \frac{y}{x} }  = 32 \\  \\  \longrightarrow \:  \sf \: 2 {}^{2( \frac{ {x}^{2} +  {y}^{2}  }{xy}) }  =  {2}^{5}

  • The bases are equal

 \longrightarrow \:  \sf \: 2( {x}^{2}  +  {y}^{2} ) = 5xy -  -  -  -  -  -  -  - (1)

Also,

 \sf \:   log_{3}(x - y)  +  log_{3}(x + y)  = 1

We know that,

  • log_b(a) = log(a)/log(b)

Thus,

 \sf \:  \dfrac{ log(x - y) }{ log(3) }  +  \dfrac{ log(x + y) }{ log(3) }  = 1 \\  \\  \longrightarrow \:  \sf \:  log(x + y)  +  log(x - y)  =  log(3)

We know that,

  • log a + log b = log(ab)

 \longrightarrow \:  \sf \:  log( {x}^{2} -  {y}^{2}  )  =  log(3)

The ratios of the logarithm functions are equal

Thus,

 \sf \:  \ {x}^{2}  -  {y}^{2}  = 3  -  -  -  -  -  -  -  -  -  -  - (2)

Consider Equation (2),

 \implies \:  \sf \:  {y}^{2}  =  {x}^{2}  - 3 -  -  -  -  -  -  -  - (3)

Putting value of y² in Equation (1),

 \implies \:  \sf \: 2( {x}^{2}  +  {x}^{2}  - 3) = 5xy \\  \\  \implies \:  \sf \: 4 {x}^{2}  - 6 = 5xy \\  \\  \implies \:  \sf \: y   =  \dfrac{4x {}^{2}  - 6}{5x}

Squaring on both sides,

 \implies \:  \sf \:  {y}^{2}  =  \dfrac{16 {x}^{4}  - 48 { x }^{2} + 36 }{25 {x}^{2} }  -  -  -  -  -  -  -  -  - (4)

Equating equations (3) and (4),

 \dashrightarrow \:  \sf \:  {16x}^{4}  - 48 {x}^{2}  +36 = 25 {x}^{4}  -  {75x}^{2}  \\  \\  \dashrightarrow \:  \sf \: 9 {x}^{4}  - 27 {x}^{2}   -  36 = 0

Applying the Quadratic Formula,

 \sf \:  {x}^{2}  =  \dfrac{ - ( - 27) \pm \sqrt{ {27}^{2} - 4(9)(-36) } }{2(9)}  \\  \\  \implies \: \:  \sf \:  {x}^{2}  =  \dfrac{27 \pm \sqrt{729 + 1296} }{18}  \\  \\  \implies \:  \sf \:  {x}^{2}  =  \frac{27 \pm \sqrt{2025} }{18}  \\  \\  \implies \:  \sf \:  {x}^{2}  =  \dfrac{27 + 45}{18}  \: or \:  \dfrac{27 - 45}{18}  \\  \\  \implies \boxed{ \boxed{ \sf \:  {x}^{2}  =  4 \: or \:  - 1}}

Consider Equation (3),

When x² = 4,

 \sf \: y {}^{2}  = 4 - 3 \\  \\  \longrightarrow \:  \sf \:  {y}^{2}  = 1

When x² = - 1,

 \sf \: y {}^{2}  =  -  1 - 3  \\  \\ \longrightarrow \:  \sf \:  {y}^{2}  =  - 4

Thus,

 \implies \boxed{ \boxed{ \sf \:  {y}^{2}  = 1 \: or \:  - 4}}

We had to solve the above equations for value of x :

If values of are 'x' is real and equal,then x² = 4

\leadsto \sf x = \pm \sqrt{4} \\ \\ \leadsto \sf x = \pm \ 2

Thus,the value of 'x' is 2


Brâiñlynêha: wow :D
Anonymous: Thank you !
Anonymous: Perfect
Anonymous: Thank You :D
Similar questions