Math, asked by Anonymous, 6 months ago


 \bold{ \huge{ \underline{ \tt{Question}}}}
 \sf \lim_{ x \to \infty }{[ \frac{n!}{ {n}^{n} } ]}^{ {n}^{ - 1} } \\
Don't Spam! ​

Answers

Answered by anindyaadhikari13
9

Answer:-

 \sf let \ y = \displaystyle \lim_{n \to \infty} \bigg( \small \sf \frac{n!}{ {n}^{n} } \bigg)^{ \frac{1}{n} }

 \sf  \implies  \log(y) = \displaystyle   \small\lim_{ \sf n \to \infty} \sf \frac{1}{n}   \log\bigg( \small \sf \frac{n!}{ {n}^{n} } \bigg)

 \sf = \displaystyle   \small\lim_{ \sf n \to \infty} \sf \frac{1}{n}   \log\bigg(  \frac{1}{n}   \times  \frac{2}{n} \times ... \frac{n}{n}  \bigg)

 \sf = \displaystyle   \small\lim_{ \sf n \to \infty} \sf \frac{1}{n}   \bigg(  \log \bigg( \frac{1}{n} \bigg)  +  \log\bigg(\frac{2}{n} \bigg)  +  ...  \log \bigg(\frac{n}{n} \bigg) \bigg)

 =  \displaystyle \lim_{ \sf n \to \infty} \sf \small \frac{1}{n}  \sum _{r = 1}^{n}  \bigg( \log \bigg( \frac{r}{n}  \bigg) \bigg)

 =  \displaystyle \int_{0}^{1}  \sf \small log(x) dx

 \displaystyle  = \sf \bigg( \large x \log(x) - x \bigg) ^{1}_{0}

 \sf = 0 - 1 -  \displaystyle \lim_{ \sf x \to 0^{ + } }( \sf x \log(x)) + 0

 \sf =  - 1 + 0 =  - 1

 \sf \implies \log(y) =  - 1

 \sf \implies y =   {e}^{ - 1}

 \sf \implies y =\frac{1}{e}

This is the required answer.

Similar questions